

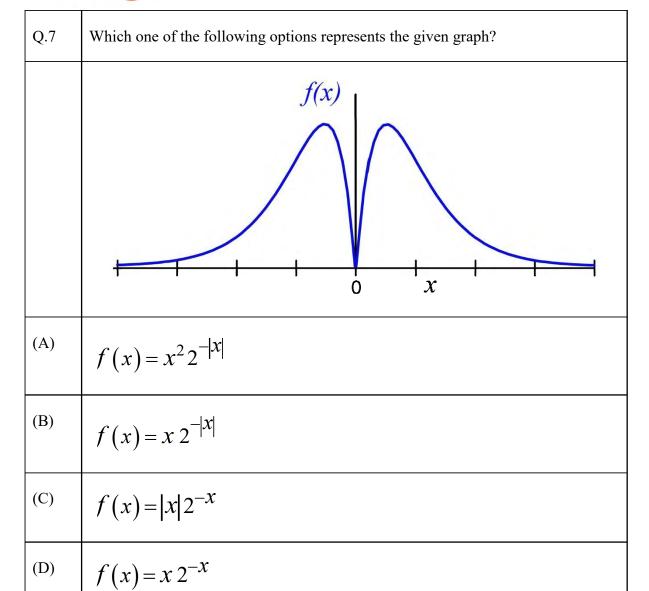
General Aptitude (GA)

Q.1 – Q.5 Carry ONE mark Each

Q.1	"I cannot support this proposal. My will not permit it."
(A)	conscious
(B)	consensus
(C)	conscience
(D)	consent
Q.2	Courts : : : Parliament : Legislature
	(By word meaning)
(A)	Judiciary
(B)	Executive
(C)	Governmental
(D)	Legal

Q.3	What is the smallest number with distinct digits whose digits add up to 45?
(A)	123555789
(B)	123457869
(C)	123456789
(D)	99999

Q.4	In a class of 100 students,
	 (i) there are 30 students who neither like romantic movies nor comedy movies, (ii) the number of students who like romantic movies is twice the number of students who like comedy movies, and (iii) the number of students who like both romantic movies and comedy movies is 20.
	How many students in the class like romantic movies?
(A)	40
(B)	20
(C)	60
(D)	30


Q.5	How many rectangles are present in the given figure?
(A)	8
(B)	9
(C)	10
(D)	12

Q.6 – Q.10 Carry TWO marks Each

Q.6	Forestland is a planet inhabited by different kinds of creatures. Among other creatures, it is populated by animals all of whom are ferocious. There are also creatures that have claws, and some that do not. All creatures that have claws are ferocious. Based only on the information provided above, which one of the following options can be logically inferred with <i>certainty</i> ?
(A)	All creatures with claws are animals.
(B)	Some creatures with claws are non-ferocious.
(C)	Some non-ferocious creatures have claws.
(D)	Some ferocious creatures are creatures with claws.

Q.8	Which one of the following options can be inferred from the given passage alone? When I was a kid, I was partial to stories about other worlds and interplanetary travel. I used to imagine that I could just gaze off into space and be whisked to another planet.
	[Excerpt from The Truth about Stories by T. King]
(A)	It is a child's description of what he or she likes.
(B)	It is an adult's memory of what he or she liked as a child.
(C)	The child in the passage read stories about interplanetary travel only in parts.
(D)	It teaches us that stories are good for children.

Q.9	Due to lac	00 individuals in a town, 100 unidentified individuals are covid positive. ek of adequate covid-testing kits, the health authorities of the town devised to identify these covid-positive individuals. The strategy is to:
	(i)	Collect saliva samples from all 1000 individuals and randomly group them into sets of 5.
	(ii)	Mix the samples within each set and test the mixed sample for covid.
	(iii)	If the test done in (ii) gives a negative result, then declare all the 5 individuals to be covid negative.
	(iv)	If the test done in (ii) gives a positive result, then all the 5 individuals are separately tested for covid.
	Given this all the 100	s strategy, no more than testing kits will be required to identify 0 covid positive individuals irrespective of how they are grouped.
(A)	700	
(B)	600	
(C)	800	
(D)	1000	

Q.10	A 100 cm × 32 cm rectangular sheet is folded 5 times. Each time the sheet is folded, the long edge aligns with its opposite side. Eventually, the folded sheet is a rectangle of dimensions 100 cm × 1 cm. The total number of creases visible when the sheet is unfolded is
(A)	32
(B)	5
(C)	31
(D)	63

Q.11 – Q.35 Carry ONE mark Each

Q.11	The major product formed in the given reaction is
	TiCl ₃ (DME) ₂ CHO Zn-Cu DME, r.t. DME: 1,2-Dimethoxyethane
(A)	ОН
(B)	O
(C)	ОН
(D)	ОН ОН

Q.12	The compound which gives a fragment at $m/z = 124[M+H]^+$ is
(A)	Me N N N N N H Me
(B)	Me N N N N N N N N N N N N N N N N N N N
(C)	Me N H N H N H N H N H N H N H N H N H N
(D)	Me N N N N N N N N N N N N N N N N N N N

Q.13	The major product formed in the given reaction is
	$ \begin{array}{c} R & R \\ \hline & [Pd(PPh_3)_4] \\ \hline & AcOH, 75 °C \end{array} $ $ R = CO_2Me $
(A)	HR R
(B)	R H:H
(C)	HIT H
(D)	R H H H H H

Q.14	The major product formed in the given reaction is
	OTf SiMe ₃ + Ph— CsF CH ₃ CN, r.t.
(A)	Ph————————————————————————————————————
(B)	Ph————————————————————————————————————
(C)	Ph————————————————————————————————————
(D)	Ph——Ph

Q.15	On irradiation using UV light (>300 nm), compounds X and Y , predominantly, undergo
	X Y
(A)	X: Norrish type I reaction and Y: Norrish type II reaction
(B)	X: Norrish type II reaction and Y: Norrish type I reaction
(C)	Both X and Y : Norrish type I reaction
(D)	Both X and Y : Norrish type II reaction
Q.16	The topicity relationship of \mathbf{H}_a and \mathbf{H}_b in X, Y and Z are, respectively,
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
(A)	Diastereotopic, Homotopic and Enantiotopic
(B)	Homotopic, Enantiotopic and Enantiotopic
(C)	Homotopic, Homotopic and Enantiotopic
(D)	Diastereotopic, Enantiotopic and Homotopic

Q.17	Compound P was prepared based on a four-component reaction at room temperature in methanol. The required starting materials for the synthesis are
	Me O N Ph HN O P
(A)	NH ₂ ; PhCHO ; MeCO ₂ H ; □ □ □ □ □ □ □ □ □ □ □ □ □
(B)	NH ₂ ; PhCHO ; MeCO ₂ H ;
(C)	PhCH₂NH₂ ; MeCO₂H ; ⊕₂C ⊖
(D)	N H O ; PhCH ₂ NH ₂ ; MeCO ₂ H ;

Q.18	The major product formed in the following reaction is
	OOR NBu ₃ SnH, AIBN C ₆ H ₆ , heat
(A)	H R H
(B)	H R H
(C)	R L
(D)	H R H

Q.19	The reaction of Ph ₃ PCl ₂ with PhNH ₂ primarily produces
(A)	Ph ₃ P=NPh
(B)	PhP=NPh
(C)	PhCl ₂ P=NPh
(D)	Ph ₂ ClP=NPh
Q.20	Formation of $[M(en)_3]^{2+}$ from $[M(H_2O)_6]^{2+}$ and three equivalents of ethylenediamine (en) is LEAST favored when M is
(A)	Со
(B)	Ni
(C)	Cu
(D)	Fe

Q.21	Wacker oxidation of alkenes is catalyzed by a combination of
(A)	Pd(II) and Cu(II)
(B)	Co(II) and Cu(II)
(C)	Pd(II) and Ni(II)
(D)	Pd(II) and Co(II)
Q.22	For the conversion of [Pt(L)Cl ₃] ⁻ to trans-[Pt(L)Cl ₂ (H ₂ O)], the trans-effect is LEAST when the ligand L is
(A)	H_2O
(B)	NH ₃
(C)	DMSO
(D)	C ₂ H ₄

Q.23	The tetracoordinated copper center in the oxidized and reduced forms of plastocyanin exhibits longest bond with
(A)	cysteine-S and methionine-S, respectively
(B)	methionine-S and cysteine-S, respectively
(C)	cysteine-S and cysteine-S, respectively
(D)	methionine-S and methionine-S, respectively
Q.24	The packing efficiency (in %) of spheres for a body-centered cubic (bcc) lattice is approximately
(A)	74
(B)	68
(C)	60
(D)	52

Q.25	The magnitudes of CFSE in [M(H ₂ O) ₆] ⁿ⁺ for Mn and Fe ions satisfy the relations
(A)	$Mn^{2+} < Mn^{3+}$ and $Fe^{2+} < Fe^{3+}$
(B)	$Mn^{2+} > Mn^{3+}$ and $Fe^{2+} > Fe^{3+}$
(C)	$Mn^{2+} < Mn^{3+}$ and $Fe^{2+} > Fe^{3+}$
(D)	$Mn^{2+} > Mn^{3+}$ and $Fe^{2+} < Fe^{3+}$

Q.26	The organometallic catalyst for the following transformation is
	$\begin{array}{c c} & & \\ \hline \\ & \\ \hline \\ & \\ \end{array} \begin{array}{c} & \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
(A)	CI PCy ₃ CI PCy ₃ Ph Cy: cyclohexyl
(B)	Ph ₃ P////////////////////////////////////
(C)	oc Co
(D)	

Q.27	Point group of naphthalene $(C_{10}H_8)$ is
(A)	D_{2d}
(B)	D_{2h}
(C)	D_{3d}
(D)	D_{3h}
Q.28	The INCORRECT statement is
(A)	Zero-point energy of a quantum mechanical harmonic oscillator of frequency ν is $\frac{h\nu}{2}$
(B)	Energy level of a quantum mechanical rigid rotor is inversely proportional to its moment of inertia
(C)	The time independent Schrödinger equation for Li ²⁺ cannot be solved exactly
(D)	Total angular momentum of an atomic system is equal to the sum of orbital angular momentum and spin angular momentum

Q.29	For an ideal gas, the molecular partition function in the canonical ensemble, that is proportional to the system volume (V) , is the
(A)	vibrational partition function
(B)	rotational partition function
(C)	electronic partition function
(D)	translational partition function
Q.30	Assertion (S): The total angular momentum for light atoms (low atomic number) is obtained by Russell-Saunders coupling, whereas <i>jj</i> -coupling is used for heavy atoms (high atomic number). Reasoning (R): The spin-orbit interactions are weak in light atoms (low atomic
	number) and strong in heavy atoms (high atomic number).
	The correct option is
(A)	S and R are true; and R is the correct reason for S
(B)	S and R are true; but R is NOT the correct reason for S
(C)	S is true but R is false
(D)	S is false but R is true

Q.31	The acetolysis product(s) of the given reaction is(are)
	Ph AcOH
(A)	Ph OAc
(B)	Ph OAc
(C)	Ph
(D)	Ph

Q.32	Product(s) formed in the given reaction is(are)
	CH ₂ OH O OMe MeONa OH
(A)	CH ₂ OH O OMe H H
(B)	CH ₂ OH H OOMe
(C)	OH H OH
(D)	CH₂OH OMe OMe OH

Q.33	The choice(s) that correctly identify radioisotopes (P, Q, R, S) shown in the following nuclear reaction is(are)	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
(A)	$P = {}^{64}_{30}\text{Zn}$	
(B)	$Q = {}^{63}_{30}\text{Zn}$	
(C)	$R = {}^{62}_{29}Cu$	
(D)	$S = {}^{62}_{29}Cu$	
Q.34	For the Lindemann-Hinshelwood mechanism of gas phase unimolecular reactions, the true statement(s) is(are)	
(A)	Only molecules with three or more atoms can follow the Lindemann-Hinshelwood mechanism	
(B)	Lindemann-Hinshelwood mechanism involves bimolecular elementary steps	
(C)	The overall reaction is of second order at low pressure	
(D)	The overall reaction is of second order at high pressure	

Q.35	The calculated magnetic moment of [Ce(NO ₃) ₅] ²⁻ is BM. (rounded off to two decimal places)
	(Given: atomic number of Ce is 58)

Q.36 – Q.65 Carry TWO marks Each

Q.36	A compound, C ₁₅ H ₁₆ O ₂ , has the following spectral data;
	¹ H NMR (ppm): 9.16 (s), 6.89 (d, $J = 8$ Hz), 6.64 (d, $J = 8$ Hz), 1.53 (s)
	¹³ C NMR (ppm): 154.7, 140.9, 127.1, 114.4, 40.7, 30.7
	The structure of the compound is
(A)	. 🗸 .
	НО
(B)	
	H ₃ CO OCH ₃
(C)	MeO_OMe
(D)	
	но

Q.37	The major product formed in the given reaction sequence is
	NK 1. Ph Br 2. NaOMe, MeOH, reflux
(A)	OH O Ph OH
(B)	OH O Ph OH
(C)	OH N Ph
(D)	O PE O

Q.38	E and F in the given reaction scheme are
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
(A)	E: Ph and F:
(B)	E: Ph and F:
(C)	HO N Ph and F:
(D)	\mathbf{E} : Ph and \mathbf{F} : Ph

Q.39	M and N in the given reaction scheme are
	$\mathbf{M} \xrightarrow{CH_2I_2, Zn\text{-Cu}} \qquad \qquad$
	NMO: N-Methylmorpholine-N-oxide
(A)	M: HO HO OH
(B)	M: HO,, OH and N: HO', OH ÖH
(C)	M: HO OH OH OH
(D)	M: HO,, OH and N: HO, OH

Q.40	In the ¹ H NMR spectrum, multiplicity of the signal (bold and underlined H atom) in the following species is
	(I) $[\underline{\mathbf{H}}\text{Ni}(\text{OPEt}_3)_4]^+$ (II) $\text{Ph}_2\text{Si}(\text{Me})\underline{\mathbf{H}}$ (III) $\text{P}\underline{\mathbf{H}}_3$ (IV) $(\text{Cp*})_2\text{Zr}\underline{\mathbf{H}}_2$ (Cp* = pentamethylcyclopentadienyl)
(A)	I- pentet, II- quartet, III- doublet and IV- singlet
(B)	I- pentet, II- singlet, III- singlet and IV- doublet
(C)	I- triplet, II- triplet, III- doublet and IV- doublet
(D)	I- singlet, II- quartet, III- singlet and IV- singlet
Q.41	The major product obtained by the treatment of (η ⁵ -C ₅ H ₅) ₂ Ni with Na/Hg in ethanol is
(A)	$(\eta^5-C_5H_5)(\eta^3-C_5H_5)Ni$
(B)	$(\eta^3-C_5H_5)_2Ni$
(C)	$(\eta^5-C_5H_5)(\eta^3-C_5H_7)Ni$
(D)	$(\eta^3 - C_5 H_7)_2 N_i$

Q.42	The number of shared corners of the constituent SiO ₄ units in orthosilicate, pyrosilicate, cyclic silicate and sheet silicate, respectively, are
(A)	0, 1, 2 and 3
(B)	2, 3, 0 and 1
(C)	0, 3, 1 and 2
(D)	1, 2, 3 and 0
Q.43	Concentration of Q in a consecutive reaction $P \stackrel{k_1}{\to} Q \stackrel{k_2}{\to} R$ is given by $[Q] = \frac{k_1[P]_0}{k_2 - k_1} \left[e^{-k_1 t} - e^{-k_2 t} \right], \text{ where } [P]_0 \text{ is the initial concentration of P.}$ If the value of $k_2 = 25 \text{ s}^{-1}$, the value of k_1 that leads to the longest waiting time for Q to reach its maximum is
(A)	$k_1 = 20 \text{ s}^{-1}$
(B)	$k_1 = 25 \text{ s}^{-1}$
(C)	$k_1 = 30 \text{ s}^{-1}$
(D)	$k_1 = 35 \text{ s}^{-1}$

Q.44	The wavefunction for Be ³⁺ in a certain state is given by $\psi = N e^{-\left(\frac{4}{a_0}r\right)}$, where N is the normalization constant, r is the distance of electron from the nucleus and a_0 is the Bohr radius. The most probable distance of the electron from the nucleus in this state is
(A)	$4a_0$
(B)	$\frac{a_0}{4}$
(C)	$8a_0$
(D)	$\frac{a_0}{8}$

Q.45	Match the following	
	Column I	Column II
	(P) Associated Legendre polynomials	(I) Harmonic oscillator
	(Q) Hermite polynomials	(II) Particle in a box model
	(R) Associated Laguerre polynomials	(III) Angular part of H atom
	(S) Trigonometric functions	(IV) Radial part of H atom
(A)	$P \rightarrow III, Q \rightarrow I, R \rightarrow IV, S \rightarrow II$	
(B)	$P \rightarrow III, Q \rightarrow IV, R \rightarrow II, S \rightarrow I$	
(C)	$P \rightarrow IV, Q \rightarrow I, R \rightarrow III, S \rightarrow II$	
(D)	$P \rightarrow II, Q \rightarrow III, R \rightarrow IV, S \rightarrow I$	

Q.46	In the scheme below,
	$P_2 \xrightarrow{I_a} 2Q \xrightarrow{k_2} R$
	I_a represents the intensity of the light absorbed. Assuming that the quantum yield of the first step is one, the steady state concentration of Q is given by
(A)	$\sqrt{\frac{I_a}{k_1 + k_2}}$
(B)	$\sqrt{\frac{I_a[P_2]}{k_1 + k_2}}$
(C)	$\frac{I_a}{k_1 + k_2}$
(D)	$\frac{I_a[P_2]}{k_1 + k_2}$

Q.47	Product(s) formed in the given reaction sequence is(are)
	1.O ₃ 2. NaOH 3. Pd/C
(A)	
(B)	HO
(C)	
(D)	OH

Q.48	Product(s) formed in the reaction below is(are)
	MeO Sn/HCI MeO OMe OMe
(A)	MeO NH OMe OMe
(B)	MeO NH MeO MeO
(C)	MeO OMe OMe
(D)	MeO N OMe OMe

Q.49	The stereoisomer(s) of G giving the depicted product is(are)					
	SiMe ₃ C ₄ H ₉ SiMe ₃ C ₅ H ₁₁ Me OH	BF ₃ ·OEt ₂ CH ₂ Cl ₂	Me C ₅ H ₁₁			
(A)	H SiMe ₃ C ₄ H ₉ C ₅ H ₁₁ Me OH					
(B)	H SiMe ₃ C ₄ H ₉ C ₅ H ₁₁ HO Me					
(C)	Me ₃ Si H C ₄ H ₉ C ₅ H ₁₁ HO Me					
(D)	Me ₃ Si H C ₄ H ₉ C ₅ H ₁₁ Me OH					

Q.50	Product(s) formed in the given reaction sequence is(are)
	1. Br ₂ , KBr, H ₂ O 2. aq. KOH, THF
(A)	O). CO ₂ H
(B)	O CO₂H
(C)	CO ₂ H
(D)	HO CO ₂ H

Q.51	The reaction(s) in which inversion of configuration occur(s) is(are)
(A)	HOW PhCO ₂ H
	DEAD: Diethyl azodicarboxylate
(B)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
(C)	NO ₂ NaOBr H ₂ O
(D)	Me PhCO ₃ H Et Bu

Q.52	The correct statement(s) regarding myoglobin (Mb) and haemoglobin (Hb) is(are)			
(A)	At low partial pressure of O ₂ (e.g., 5 kPa), the O ₂ affinity of Hb lowers upon lowering the pH			
(B)	Binding of the first O ₂ molecule to Hb results in lower affinity for the binding of second O ₂ molecule			
(C)	Metal center in deoxy-Mb is low-spin whereas it is high-spin in the case of oxy-Mb			
(D)	One end of O ₂ binds to the metal center in oxy-Mb and the other end of the bound O ₂ is H-bonded with imidazole-NH of a distal histidine			
Q.53	The correct statement(s) regarding Co ₂ (CO) ₈ is(are)			
(A)	It reacts with Na to give Na[Co(CO) ₄]			
(B)	It contains three bridging carbonyls			
(C)	It can be prepared by reductive carbonylation of Co(OAc) ₂ ·4H ₂ O			
(D)	Two isomers exist in hexane solution			

0.74	TI 1/) 1 ' FW 14/2 ' ' ' ' /)
Q.54	The compound(s) having [Xe] $4f^1$ configuration is(are)
	(Given the atomic numbers Ce:58, Lu:71, Pr:59 and Nd:60)
(A)	Na ₃ [Ce(NO ₃) ₆]
(B)	Na ₃ [LuCl ₆]
(C)	PrO_2
(D)	$Nd(NR_2)_3 (R = SiMe_3)$
Q.55	The correct statement(s) for XeF ₂ is(are)
(A)	Its bonding is best explained by classical 2-centered-2-electron bonds
(B)	Its bonding is best explained by a non-classical 3-centered-4-electron bond
(C)	It contains nine lone pairs of electrons
(D)	Its point group is $D_{\infty h}$

Q.56	For the non-dissociative adsorption of a gas on solid,
	(i) the Freundlich isotherm is given by $\theta = kp^{1/n}$ where θ is surface coverage, p is pressure, k and n are empirical constants; and
	(ii) the BET isotherm is given by $\frac{p}{p^*-p} = \frac{\theta}{c} + \theta(c-1)\left(\frac{p}{p^*}\right)$
	where p^* and c are empirical constants, and $p < p^*$.
	The correct statement(s) is(are)
(A)	At low surface coverage, the Langmuir isotherm reduces to the Freundlich isotherm with $n=1$
(B)	At high surface coverage, the Langmuir isotherm reduces to the Freundlich isotherm with $n=\infty$
(C)	At very low pressure ($p \ll p^*$), the BET isotherm reduces to the Langmuir isotherm
(D)	At very high pressure $(p \to p^*)$, the BET isotherm reduces to the Langmuir isotherm

Q.57	Two different enzyme catalysis reactions I and II have identical Y-intercepts for the Lineweaver-Burke (equation given below) plots. The slope for reaction I is twice than that of reaction II. If the initial concentrations of enzymes in I and II are same, the correct statement(s) is(are)
	$\frac{1}{\nu} = \frac{1}{\nu_{max}} + \frac{K_M}{\nu_{max}} \frac{1}{[S]}$ where ν and ν_{max} are rate and maximum rate; K_M is Michaelis-Menten constant, and [S] is substrate concentration.
(A)	Reactions I and II have same turn over number
(B)	Michaelis-Menten constants for reactions I and II are identical
(C)	Michaelis-Menten constant for reaction I is twice than that of reaction II
(D)	The rates of the elementary steps for reactions I and II are identical

Q.58	The enthalpy change for the exothermic reaction between BeI ₂ and HgF ₂ iskJ mol ⁻¹ (rounded off to the nearest integer) (Given: Bond dissociation energy (in kJ mol ⁻¹) for Be-F = 632, Be-I = 289, Hg-F = 268 and Hg-I = 145)

Q.59	Number of carbon atoms connected to the metal center in $[W(C_{60})(CO)_5]$ is (rounded off to the nearest integer)
	(Given: atomic number of W is 74)
Q.60	Two-component solid-liquid system of naphthalene-benzene forms a simple eutectic mixture. Assuming that naphthalene-benzene forms an ideal solution, the mole fraction of naphthalene in benzene at 300 K and 1 bar is (rounded off to two decimal places)
	(Given: Freezing point (T_{fp}) and enthalpy of fusion (ΔH_{fus}) of naphthalene are 353 K and 19.28 kJ mol ⁻¹ , respectively and gas constant $(R) = 8.31$ J K ⁻¹ mol ⁻¹)
Q.61	The intrinsic viscosity of a sample of polystyrene in toluene is 84 cm ³ g ⁻¹ at 30 °C. It follows Mark-Houwink equation with empirical constant values of $K = 1.05 \times 10^{-2}$ cm ³ g ⁻¹ and $a = 0.75$. The molecular weight of the polymer is×10 ³ g mol ⁻¹ (rounded off to the nearest integer)
Q.62	According to Debye-Hückel limiting law, the mean molal activity coefficient for 0.87 g K ₂ SO ₄ (molar mass = 174 g mol ⁻¹) in 1 kg of water at 25 °C is (rounded off to two decimal places)

Q.63	A solution is prepared by dissolving 128 g of naphthalene (C ₁₀ H ₈) in 780 g of benzene (C ₆ H ₆). The vapor pressure of pure benzene is 12.6 kPa at 25 °C. Assuming that naphthalene in benzene is an ideal solution, the partial vapor pressure of benzene iskPa (rounded off to two decimal places)
Q.64	For the galvanic cell: H ₂ (g) HCl (aq) Cl ₂ (g)
	the standard electromotive force (E^0) value is given by
	$E^{0} = 1.73 - (1.25 \times 10^{-3})T + (1.00 \times 10^{-6})T^{2}$
	where E^0 is in Volts and T is in Kelvin.
	For the cell reaction, the standard enthalpy change $(\Delta_r H^0)$ at 300 K is kJ mol ⁻¹ (rounded off to the nearest integer)
	(Given: Faraday constant, $F = 96500 \text{ C mol}^{-1}$)
Q.65	A solution of three non-interacting compounds P, Q, and R is taken in a cuvette of 1 cm path length. Their concentrations are [P] = 1×10^{-6} M, [Q] = 2×10^{-6} M, [R] = 3×10^{-6} M and the molar extinction coefficients at 300 nm are $\epsilon_P = 1 \times 10^5$ M ⁻¹ cm ⁻¹ , $\epsilon_Q = 2 \times 10^5$ M ⁻¹ cm ⁻¹ and $\epsilon_R = 3 \times 10^5$ M ⁻¹ cm ⁻¹ . The % transmittance at 300 nm is (rounded off to two decimal places)

END OF QUESTION PAPER

GATE 2023 Chemistry (CY)

Q. No.	Session	Question Type (QT) MCQ/MSQ/NAT	Subject Name (SN)	Key/Range (KY)	Mark (MK)
1	4	MCQ	GA	С	2
2	4	MCQ	GA	А	2
3	4	MCQ	GA	С	
4	4	MCQ	GA	С	
5	4	MCQ	GA	С	
6	4	MCQ	GA	D	
7	4	MCQ	GA	А	
8	4	MCQ	GA	В	
9	4	MCQ	GA	Α	
10	4	мсо	GA	С	
11	4	MCQ	CY	Α	
12	4	MCQ	CY	В	
13	4	MCQ	CY	Α	
14	4	MCQ	CY	А	
15	4	MCQ	CY	В	
16	4	MCQ	CY	В	
17	4	MCQ	CY	Α	
18	4	MCQ	CY	В	
19	4	MCQ	CY	Α	
20	4	MCQ	CY	D	
21	4	MCQ	CY	Α	
22	4	MCQ	CY	Α	
23	4	MCQ	CY	D	
24	4	MCQ	CY	В	
25	4	MCQ	CY	С	
26	4	MCQ	CY	Α	
27	4	MCQ	CY	В	
28	4	MCQ	CY	С	
29	4	MCQ	CY	D	
30	4	MCQ	СҮ	А	
31	4	MSQ	СҮ	A, C	
32	4	MSQ	CY	А, В, С	
33	4	MSQ	CY	A, B, D	
34	4	MSQ	СҮ	А, В, С	
35	4	NAT	CY	2.51 to 2.55	
36	4	MCQ	CY	Α	
37	4	MCQ	СҮ	В	
38	4	MCQ	СҮ	Α	
39	4	MCQ	CY	С	
40	4	MCQ	СҮ	А	
41		MCQ	СҮ	С	
42		MCQ	СҮ	А	
43		MCQ	СУ	A	
44		MCQ	СҮ	В	
45		MCQ	СҮ	A	

46	4	MCQ	CY	Α	2
47	4	MSQ	СҮ	А, В	2
48	4	MSQ	CY	A, C	2
49	4	MSQ	СҮ	A, C	2
50	4	MSQ	CY	A, C	2
51	4	MSQ	СҮ	А, В	2
52	4	MSQ	CY	A, D	2
53	4	MSQ	СҮ	A, C, D	2
54	4	MSQ	CY	A, C	2
55	4	MSQ	СҮ	B, C, D	2
56	4	MSQ	CY	А, В, С	2
57	4	MSQ	СҮ	A, C	2
58	4	NAT	СҮ	-440 to -440	2
59	4	NAT	CY	7 to 7	2
60	4	NAT	СҮ	0.30 to 0.32	2
61	4	NAT	CY	158 to 160	2
62	4	NAT	CY	0.74 to 0.76	2
63	4	NAT	CY	11.34 to 11.47	2
64	4	NAT	CY	-164 to -154	2
65	4	NAT	CY	3.98 to 4.00	2