$\mathbf{Q.}~\mathbf{1} - \mathbf{Q.}~\mathbf{5}$ carry one mark each.

Q.1	John Thomas, an		_ writer, passed away is	n 2018.
	(A) imminent(C) eminent		(B) prominent (D) dominant	
Q.2	I permitted hi	m to leave, I would	dn't have had any pro	blem with him being absent,
	(A) Had, wouldn't (C) Had, would		(B) Have, would (D) Have, wouldn	ı't
Q.3			the factory clock had I she stay in the factory	moved by 225 degrees during y?
	(A) 3.75 hours (C) 8.5 hours		(B) 4 hours and 1: (D) 7.5 hours	5 mins
Q.4	The sum and producthese two integers is	_	re 26 and 165 respecti	vely. The difference between
	(A) 2	(B) 3	(C) 4	(D) 6
Q.5	The minister avoide He was accused of _	-		servation in the private sector.
	(A) collaring(C) tying		(B) skirting(D) belting	
Q. 6 –	Q. 10 carry two man	ks each.		
Q.6	statement turns out then they are shot.	to be true then the One prisoner made	y are hanged. If the st	nake one statement. If their satement turns out to be false adge had no option but to set
	(A) I did not commi (B) I committed the (C) I will be shot (D) You committed	crime		

GA 1/3

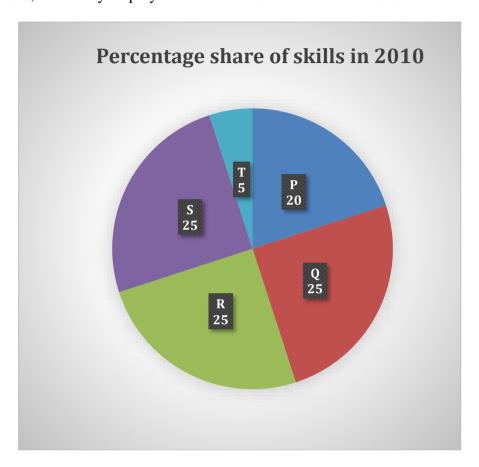
Q.7 A person divided an amount of Rs. 100,000 into two parts and invested in two different schemes. In one he got 10% profit and in the other he got 12%. If the profit percentages are interchanged with these investments he would have got Rs.120 less. Find the ratio between his investments in the two schemes.

(A) 9: 16

(B) 11:14

(C) 37:63

(D) 47:53


Q.8 Congo was named by Europeans. Congo's dictator Mobuto later changed the name of the country and the river to Zaire with the objective of Africanising names of persons and spaces. However, the name Zaire was a Portuguese alteration of *Nzadi o Nzere*, a local African term meaning 'River that swallows Rivers'. Zaire was the Portuguese name for the Congo river in the 16th and 17th centuries.

Which one of the following statements can be inferred from the paragraph above?

- (A) Mobuto was not entirely successful in Africanising the name of his country
- (B) The term Nzadi o Nzere was of Portuguese origin
- (C) Mobuto's desire to Africanise names was prevented by the Portuguese
- (D) As a dictator Mobuto ordered the Portuguese to alter the name of the river to Zaire

GA 2/3

Q.9 A firm hires employees at five different skill levels P, Q, R, S, T. The shares of employment at these skill levels of total employment in 2010 is given in the pie chart as shown. There were a total of 600 employees in 2010 and the total employment increased by 15% from 2010 to 2016. The total employment at skill levels P, Q and R remained unchanged during this period. If the employment at skill level S increased by 40% from 2010 to 2016, how many employees were there at skill level T in 2016?

- (A) 30
- (B) 35
- (C) 60
- (D) 72
- Q.10 M and N had four children P, Q, R and S. Of them, only P and R were married. They had children X and Y respectively. If Y is a legitimate child of W, which one of the following statements is necessarily FALSE?
 - (A) M is the grandmother of Y
 - (B) R is the father of Y
 - (C) W is the wife of R
 - (D) W is the wife of P

END OF THE QUESTION PAPER

GA 3/3

Q. 1 - Q. 25 carry one mark each.

Q.1	The INCORRECT	statement a	about the	solid-state	structure of	CsCl and	CaF ₂ is:
-----	----------------------	-------------	-----------	-------------	--------------	----------	----------------------

- (A) Cations in both solids exhibit coordination number 8.
- (B) CsCl has bcc type structure and CaF₂ has cubic close pack structure.
- (C) Radius ratio for Cs/Cl and Ca/F is 0.93 and 0.73, respectively.
- (D) Both exhibit close pack structure.

Q.2 The **INCORRECT** statement about the interhalogen compound ICl₃ is:

- (A) It exists as a dimer.
- (B) Geometry around the iodine is tetrahedral in solid-state.
- (C) It decomposes as ICl and Cl₂ in gas-phase.
- (D) Liquid ICl₃ conducts electricity.

Q.3 Among the following carbon allotropes, the one with discrete molecular structure is

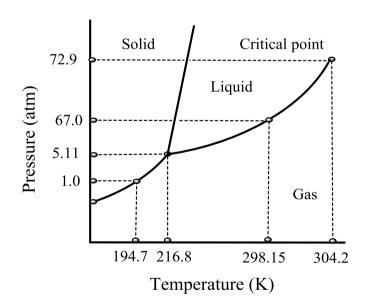
- (A) Diamond
- (B) α-Graphite
- (C) β-Graphite
- (D) Fullerene

Q.4 The **INCORRECT** statement about the silicones is:

- (A) They are thermally unstable because of the Si–C bond.
- (B) They are insoluble in water.
- (C) They are organosilicon polymers.
- (D) They have stable silica-like skeleton (-Si-O-Si-O-Si-).

Q.5 The Δ_o value of $[Ni(H_2O)_6]^{2+}$ is 8500 cm⁻¹. The Δ_o values for $[NiCl_6]^{4-}$ and $[Ni(NH_3)_6]^{2+}$ compared to $[Ni(H_2O)_6]^{2+}$ are

- (A) higher and lower, respectively.
- (B) lower and higher, respectively.
- (C) higher in both complex ions.
- (D) lower in both complex ions.

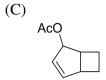

CY 1/17

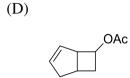
- Q.6 In Freundlich isotherm, a linear relationship is obtained in the plot of
 - (θ = surface coverage and p = partial pressure of the gas)
 - (A) θ vs p.

(B) $\ln(\theta)$ vs $\ln(p)$.

(C) $ln(\theta)$ vs p.

- (D) θ vs ln(p).
- Q.7 Micelle formation is accompanied by the
 - (A) decrease in overall entropy due to ordering.
 - (B) increase in overall entropy mostly due to increase in solvent entropy.
 - (C) increase in overall entropy mostly due to increase in solute entropy.
 - (D) increase in overall entropy and decrease in enthalpy.
- Q.8 Consider the following phase diagram of CO₂ (not to scale). At equilibrium, the **INCORRECT** statement is:




- (A) At 200 K, on increasing the pressure from 1 to 50 atm, CO₂ gas condenses to liquid.
- (B) It is not possible to obtain liquid CO₂ from gaseous CO₂ below 5.11 atm.
- (C) Both liquid and gas phase of CO₂ coexist at 298.15 K and 67 atm.
- (D) With increasing pressure, the melting point of solid CO₂ increases.

CY 2/17

Q.9 The major product formed in the following reaction is

Q.10 The Woodward-Hoffmann condition to bring out the following transformation is

(A) Δ , conrotatory

(B) Δ , disrotatory

(C) hv, disrotatory

(D) hv, conrotatory

Q.11 The major product formed in the following reaction is

Q.12 In the following reaction, the stereochemistry of the major product is predicted by the

(A) Cram's model

(B) Cram's chelation model

(C) Felkin model

(D) Felkin-Anh model

Q.13 The product(s) formed in the following reaction is (are)

$$CH_3$$
 CH_3
 CH_3

Q.14 Among the following compounds, the number of compounds that **DO NOT** exhibit optical activity at room temperature is ______.

CY 4/17

Q.15 The number of following diene(s) that undergo Diels-Alder reaction with methyl acrylate is

Q.16 The number of ¹H NMR signals observed for the following compound is _____.

$$CH_3$$
 OCH_3 OCH_3 OCH_3

Q.17 The number of CO stretching bands in IR spectrum of trigonal bipyramidal cis-M(CO) $_3L_2$ is _____.

(M = metal and L = monodentate ligand)

Q.18 On heating a sample of 25 mg hydrated compound (molecular weight = 250 g/mol) in thermogravimetric analysis, 16 mg of dehydrated compound remains. The number of water molecules lost per molecule of hydrated compound is ______.

(Molecular weight of water = 18 g/mol)

Q.19 The total number of α and β particles emitted in the following radioactive decay is _____.

$$^{238}_{92}U \longrightarrow ^{210}_{82}Pb$$

CY 5/17

Q.20	An ideal gas occupies an unknown volume V liters (L) at a pressure of 12 atm. The gas is expanded isothermally against a constant external pressure of 2 atm so that its final volume becomes 3 L. The work involved for this expansion process iscal. (Round off to two decimal places)
	(Gas constant R = 0.082 L atm mol ⁻¹ K ⁻¹ = 2 cal mol ⁻¹ K ⁻¹)
Q.21	The entropy change for the melting of ' \mathbf{x} ' moles of ice (heat of fusion is 80 cal g^{-1}) at 273 K and 1 atm pressure is 28.80 cal K^{-1} . The value of ' \mathbf{x} ' is (Round off to two decimal places)
	(Molecular weight of water =18 g/mol)
Q.22	Consider a two-state system at thermal equilibrium having energies 0 and $2k_BT$ for which the degeneracies are 1 and 2, respectively. The value of the partition function at the same absolute temperature T is (Round off to two decimal places)
	(k _B is the Boltzmann constant)
Q.23	Consider a system of three identical and distinguishable non-interacting particles and three available nondegenerate single particle energy levels having energies 0 , ϵ and 2ϵ . The system is in contact with a heat bath of temperature T K. A total energy of 2ϵ is shared by these three particles. The number of ways the particles can be distributed is
Q.24	In a 400 MHz ¹ H NMR spectrometer, a proton resonates at 1560 Hz higher than that of tetramethylsilane. The chemical shift value of this proton is ppm. (Round off to one decimal place)
	(Chemical shift of tetramethylsilane is fixed at zero ppm)
Q.25	Gas phase bond length and dipole moment of a compound (MX) is 3 Å and 10.8 D, respectively. The ionic character in gas phase MX is%. (Round off to one decimal place)
	$(1D = 3.336 \times 10^{-30} \text{ C m})$

CY 6/17

Q. 26 - Q. 55 carry two marks each.

Q.26 The experimentally observed magnetic moment values, which match well spin-only values for the pair of aqueous ions is								
	(Atomic number: $Cr = 24$, $Co = 27$, $Gd = 64$, $Tb = 65$, $Dy = 66$ and $Lu = 71$)							
	(A) Cr(III) and Gd(III)	(1	B) Co(II) and Gd (I	II)				
	(C) Cr(III) and Dy(III)		D) Lu(III) and Tb(I	II)				
Q.27	Among the following	compounds, a normal s	pinel is					
	(A) MgFe ₂ O ₄	(1	B) ZnFe ₂ O ₄					
	(C) CoFe ₂ O ₄	(1	D) CuFe ₂ O ₄					
Q.28	Following are the exar	mples of silicate minera	ls					
	Zircon, ZrSiO ₄	Beryl, Be ₃ Al ₂ S	i ₆ O ₁₈ Pyrophyl	lite, $Al_2(OH)_2[(Si_2O_5)_2]$				
	I	II		III				
		II description of the mine	rals is	Ш				
	The correct structural of			III				
	The correct structural (A) I – Ortho silicate,	description of the mine	III – Sheet silicate	III				
	The correct structural of (A) I – Ortho silicate, II	description of the mine. II – Cyclic silicate and	III – Sheet silicateII – Cyclic silicate	III				
	The correct structural of (A) I – Ortho silicate, (B) I – Ortho silicate, (C) I – Cyclic silicate,	description of the mine II – Cyclic silicate and II – Sheet silicate and I	III – Sheet silicate III – Cyclic silicate IIII – Ortho silicate	III				
Q.29	The correct structural of (A) I – Ortho silicate, (B) I – Ortho silicate, (C) I – Cyclic silicate, (D) I – Sheet silicate, (D)	description of the mine. II – Cyclic silicate and II – Sheet silicate and I II – Sheet silicate and II – Ortho silicate and I	III – Sheet silicate III – Cyclic silicate III – Ortho silicate III – Cyclic silicate	III nd their relative intensities				
Q.29	The correct structural of (A) I – Ortho silicate, (B) I – Ortho silicate, (C) I – Cyclic silicate, (D) I – Sheet silicate, (D)	description of the mine. II – Cyclic silicate and II – Sheet silicate and I II – Sheet silicate and II – Ortho silicate and I	III – Sheet silicate III – Cyclic silicate III – Ortho silicate III – Cyclic silicate	nd their relative intensities				
	The correct structural of (A) I – Ortho silicate, (B) I – Ortho silicate, (C) I – Cyclic silicate, (D) I – Sheet silicate, (D)	description of the miner III – Cyclic silicate and III – Sheet silicate and III – Sheet silicate and III – Ortho silicate	III – Sheet silicate III – Cyclic silicate IIII – Ortho silicate IIII – Cyclic silicate number of lines ar (C) 4 and 1:2:2:1	nd their relative intensities				

CY 7/17

Q.31 The correct molecular representation of W(Cp)₂(CO)₂ is

(Cp = cyclopentadienyl)

(A)
$$[W(\eta^1-Cp)(\eta^3-Cp)(CO)_2]$$

(B)
$$[W(\eta^1-Cp)(\eta^5-Cp)(CO)_2]$$

(C)
$$[W(\eta^3-Cp)(\eta^5-Cp)(CO)_2]$$

(D)
$$[W(\eta^5-Cp)_2(CO)_2]$$

Q.32 Match the metalloproteins with their respective functions.

P	Ferritin	Ι	Electron transfer
Q	Rubredoxin	II	Acid-base catalysis
R	Cobalamin	III	Metal storage
S	Carbonic anhydrase	IV	Methyl transfer

(A)
$$P - III$$
; $Q - II$; $R - I$; $S - IV$

(B)
$$P - III$$
; $Q - I$; $R - IV$; $S - II$

(C)
$$P - IV$$
; $Q - I$; $R - III$; $S - II$

(D)
$$P - IV$$
; $Q - II$; $R - I$; $S - III$

Q.33 Suppose the wave function of a one dimensional system is

$$\psi = \sin(kx) \exp(3ikx).$$

In an experiment measuring the momentum of the system, one of the expected outcomes is

(A) 0

(B) $\hbar k$

(C) $2 \hbar k$

(D) $3 \hbar k$

Q.34 The major product formed in the following reaction is

$$n$$
-Bu₃SnH

AIBN
benzene, Δ

(AIBN = azobisisobutyronitrile)

Q.35 The major product formed in the following reaction is

(A)
$$HOOC \longrightarrow HOOC \longrightarrow HOO$$

CY 9/17

Q.36 The major product formed in the following reaction is

(A)
$$\begin{array}{c} O & O \\ H_3C & OEt \\ \hline (2 \text{ equiv.}) \end{array} + \text{ HCHO} \xrightarrow{\begin{array}{c} \text{NaOEt} \\ \text{EtOH, } \Delta \end{array}} \\ H_3C & O \\ \hline COOEt & COOEt \\ \end{array}$$

(C) (D)
$$H_3C \xrightarrow{O} COOEt$$

Q.37 The major product formed in the following reaction is

CY

Q.38 In the following reaction sequence, the products $\bf P$ and $\bf Q$ are

$$\begin{array}{c|c} & & \text{Pd}(\mathsf{OAc})_2 \; (\mathsf{cat.}) \\ \hline & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ &$$

$$\mathbf{P} = \begin{array}{c} CN \\ N \\ Ts \end{array}$$

(B)
$$\begin{array}{c} T_S & COCH_3 \\ \hline \\ CN & CN \\ \hline \\ CN & CN \\ \hline \\ COCH_3 \\ \hline \end{array}$$

(C)
$$\mathbf{P} = \begin{array}{c} \mathbf{C}\mathbf{N} \\ \mathbf{N} \\ \mathbf{T}\mathbf{S} \end{array} \qquad \mathbf{Q} = \begin{array}{c} \mathbf{O} \\ \mathbf{N} \\ \mathbf{T}\mathbf{S} \end{array}$$

(D)
$$\mathbf{P} = \begin{array}{c} CN \\ NH \\ Ts \end{array}$$

CY 11/17

Q.39 The major product formed in the following reaction is

(PCC = pyridinium chlorochromate)

CY 12/17

Q.40 In the following reactions, the major products \mathbf{P} and \mathbf{Q} are

$$Q \qquad PhCO_3H \qquad DhCO_3H \qquad Denzene, 0 °C \qquad R = H \qquad R = COEt$$
(A)
$$P = \qquad OCOEt \qquad Q = \qquad OH \qquad OCOEt \qquad Q = \qquad OH \qquad OCOEt \qquad OCOEt \qquad OH \qquad OCOEt \qquad OCOEt \qquad OH \qquad OCOEt \qquad OCOEt \qquad OH \qquad OCOEt \qquad$$

Q.41 In the following reaction sequence, the products \mathbf{P} and \mathbf{Q} are

CY 13/17

Q.42 The major product formed in the following reaction is

$$(A) \qquad \qquad (B) \qquad \qquad COCH_3 \qquad \qquad (B) \qquad \qquad (COCH_3) \qquad \qquad (COCH_3) \qquad (COCH_3) \qquad (COCH_3) \qquad (COCH_3) \qquad (COCH_3) \qquad (COCH_3) \qquad \qquad (COC$$

(C)
$$(D)$$
 $OCOCH_3$ $OCOCH_3$

Q.43 The rate of the following redox reaction is slowest when \mathbf{X} is

$$[Co^{III}(NH_3)_5\boldsymbol{X}]^{3+/2+} \ + \ [Cr^{II}(H_2O)_6]^{2+} \ \rightarrow \ [Co^{II}(NH_3)_5(H_2O)]^{2+} \ + \ [Cr^{III}(H_2O)_5\boldsymbol{X}]^{3+/2+}$$

- (A) H₂O
- (B) NH₃
- (C) Cl⁻
- (D) N_3^-

Q.44 A complex is composed of one chromium ion, three bromides and six water molecules. Upon addition of excess AgNO₃, 1.0 g aqueous solution of the complex gave 0.94 g of AgBr. The molecular formula of the complex is

(Atomic weight: Cr = 52, Br = 80, Ag = 108, O = 16 and H = 1)

(A) $[Cr(H_2O)_6]Br_3$

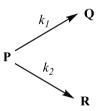
(B) $[Cr(H_2O)_5Br]Br_2 \cdot H_2O$

(C) $[Cr(H_2O)_4Br_2]Br \cdot 2H_2O$

(D) $[Cr(H_2O)_3Br_3] \cdot 3H_2O$

CY

Q.45 The number of possible optically active isomer(s) for the following complex is ______


$$\begin{bmatrix} O_2 \\ N \\ Co(en)_2 \end{bmatrix}$$
Co(en)₂

$$\begin{bmatrix} O_2 \\ N \\ H_2 \end{bmatrix}$$

en = ethylenediamine

Q.46 The specific rotation of optically pure (R)-2-bromobutane is -112.00. A given sample of 2-bromobutane exhibited a specific rotation of -82.88. The percentage of (S)-(+)-enantiomer present in this sample is ______.

Q.47 Consider the following two parallel irreversible first order reactions at temperature T,

where k_1 and k_2 are the rate constants and their values are 5×10^{-2} and 15×10^{-2} min⁻¹, respectively, at temperature T. If the initial concentration of the reactant '**P**' is 4 mol L⁻¹, then the concentration of product '**R**' after 10 min of reaction is _____ mol L⁻¹. (Round off to two decimal places)

(Assume only **P** is present at the beginning of the reaction.)

Q.48 Consider the following equilibrium

$$SO_2(g) + \frac{1}{2}O_2 = SO_3(g)$$

At 298 K, the standard molar Gibbs energies of formation, $\Delta_f G^0$, of SO₂ (g) and SO₃ (g) are -300 and -371 kJ mol⁻¹, respectively. The value of the equilibrium constant, K_P , at this temperature is _____ × 10¹⁰. (Round off to the nearest integer)

(Gas constant $R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1}$)

CY 15/17

Q.49 Consider the electrochemical cell

$$M(s)|MI_2(s)|MI_2(aq)|M(s)$$

where 'M' is a metal. At 298 K, the standard reduction potentials are

$$E_{\rm M^2+(aq)/M(s)}^0 = -0.12$$
 V, $E_{\rm MI_2(s)/M(s)}^0 = -0.36$ V and the temperature coefficient is $\left(\frac{\partial E_{\rm cell}^0}{\partial T}\right)_{\rm P} = 1.5 \times 10^{-4}$ V K⁻¹. At this temperature the standard enthalpy change for the overall cell reaction, $\Delta_{\rm r} {\rm H^0}$, is _____kJ mol⁻¹. (Round off to two decimal places)

(Faraday constant $F = 96500 \text{ C mol}^{-1}$)

Q.50 The normal boiling point of a compound (**X**) is 350 K (heat of vaporization, $\Delta_{\text{vap}}H$, = 30 kJ mol⁻¹). The pressure required to boil '**X**' at 300 K is _____ Torr. (Round off to two decimal places)

(Ignore the temperature variation of $\Delta_{vap}H$; Gas constant $R=8.31~J~mol^{-1}~K^{-1}$ and 1~atm=760~Torr)

Q.51 For a bimolecular gas phase reaction $P+Q\to R$, the pre-exponential factor is 1×10^{13} dm³ mol⁻¹ s⁻¹. The standard entropy of activation at 25 °C is _____ J K⁻¹ mol⁻¹. (Round off to two decimal points)

(The standard concentration $c^o = 1 \text{ mol dm}^{-3}$; Planck constant $h = 6.62 \times 10^{-34} \text{ J s}$; Boltzmann constant $k_B = 1.38 \times 10^{-23} \text{ J K}^{-1}$; Gas constant $R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1}$)

Q.52 Character table of point group D_8 is given below.

D_8	Е	2C ₈	2C ₄	$2C_8^3$	C_2	4C ₂ ′	4C ₂ "
A_1	a	1	1	1	1	1	1
A_2	b	1	1	1	1	h	i
\mathbf{B}_1	c	-1	1	-1	1	1	j
\mathbf{B}_2	d	-1	1	-1	1	-1	1
E_1	e	$\sqrt{2}$	0	$-\sqrt{2}$	-2	0	0
E_2	f	0	-2	0	k	0	0
E_3	g	$-\sqrt{2}$	0	$\sqrt{2}$	-2	0	0

Value of $(\mathbf{a} + \mathbf{b} + \mathbf{c} + \mathbf{d} + \mathbf{e} + \mathbf{f} + \mathbf{g} + \mathbf{h} + \mathbf{i} + \mathbf{j} + \mathbf{k})$ is equal to _____.

CY 16/17

Q.53 If $\langle \alpha | \hat{S}_x \hat{S}_y - \hat{S}_y \hat{S}_x | \alpha \rangle = i\hbar^2 a$, where \hat{S}_x and \hat{S}_y are spin angular momentum operators and $|\alpha\rangle$ is spin up eigen function, then the value of 'a' is _____. (Round off to one decimal place)

Q.54 A particle in one dimensional box of length 2a with potential energy

$$V = \begin{cases} 0 & |x| < a \\ \infty & |x| > a \end{cases}$$

is perturbed by the potential V' = cx eV, where c is a constant. The 1st order correction to the 1st excited state of the system is ______ × c eV.

Q.55 Consider a two dimensional harmonic oscillator with angular frequency $\omega_x = 2\omega_y = 6.5 \times 10^{14} \text{ rad s}^{-1}$. The wavelength of x polarized light required for the excitation of a particle from its ground state to the next allowed excited state is ______ $\times 10^{-6}$ m. (Round off to one decimal place)

(Speed of light $c = 3.0 \times 10^8 \text{ m s}^{-1}$)

END OF THE QUESTION PAPER

CY 17/17

Q.No.	Туре	Section	Кеу	Marks
1	MCQ	GA	С	1
2	MCQ	GA	С	1
3	MCQ	GA	D	1
4	MCQ	GA	С	1
5	MCQ	GA	В	1
6	MCQ	GA	С	2
7	MCQ	GA	D	2
8	MCQ	GA	Α	2
9	MCQ	GA	С	2
10	MCQ	GA	D	2
1	MCQ	CY	D	1
2	MCQ	CY	В	1
3	MCQ	CY	D	1
4	MCQ	CY	Α	1
5	MCQ	CY	В	1
6	MCQ	CY	В	1
7	MCQ	CY	В	1
8	MCQ	CY	А	1
9	MCQ	CY	В	1
10	MCQ	CY	D	1
11	MCQ	CY	В	1
12	MCQ	CY	В	1
13	MCQ	CY	С	1

Q.No.	Туре	Section	Key	Marks
14	NAT	CY	4 to 4	1
15	NAT	CY	5 to 5	1
16	NAT	CY	6 to 6	1
17	NAT	CY	3 to 3	1
18	NAT	CY	5 to 5	1
19	NAT	CY	11 to 11	1
20	NAT	CY	-126.00 to -120.00	1
21	NAT	СҮ	5.40 to 5.55	1
22	NAT	CY	1.25 to 1.30	1
23	NAT	CY	6 to 6	1
24	NAT	CY	3.9 to 3.9	1
25	NAT	CY	74.0 to 76.0	1
26	MCQ	CY	А	2
27	MCQ	CY	В	2
28	MCQ	CY	А	2
29	MCQ	CY	D	2
30	MCQ	CY	А	2
31	MCQ	CY	С	2
32	MCQ	СҮ	В	2
33	MCQ	СҮ	С	2
34	MCQ	СҮ	А	2
35	MCQ	CY	В	2
36	MCQ	CY	D	2

Q.No.	Туре	Section	Key	Marks
37	MCQ	CY	D	2
38	MCQ	CY	С	2
39	MCQ	CY	С	2
40	MCQ	CY	В	2
41	MCQ	CY	В	2
42	MCQ	CY	С	2
43	MCQ	CY	В	2
44	MCQ	CY	В	2
45	NAT	CY	2 to 2 OR 4 to 4	2
46	NAT	CY	13 to 13	2
47	NAT	CY	2.50 to 2.65	2
48	NAT	CY	265 to 295	2
49	NAT	CY	-38.00 to -37.00	2
50	NAT	CY	120.00 to 140.00	2
51	NAT	CY	-12.90 to -12.40	2
52	NAT	CY	9 to 9	2
53	NAT	CY	0.5 to 0.5	2
54	NAT	CY	0 to 0	2
55	NAT	CY	2.8 to 3.0	2