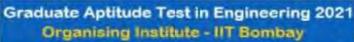
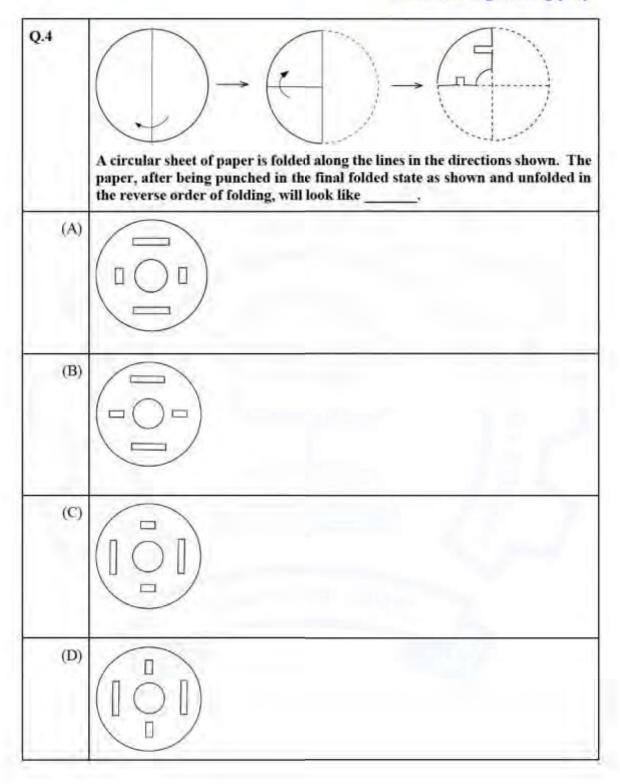

General Aptitude (GA)

Q.1 - Q.5 Multiple Choice Question (MCQ), carry ONE mark each (for each wrong answer: - 1/3).

Q.1	The ratio of boys to girls in a class is 7 to 3. Among the options below, an acceptable value for the total number of students in the class is:	
(A)	21	
(B)	37	
(C)	50	
(D)	73	




Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Q.3	Consider the following sentences:	
	 (i) Everybody in the class is prepared for the exam. (ii) Babu invited Danish to his home because he enjoys playing chess. Which of the following is the CORRECT observation about the above two sentences? 	
(A)	(i) is grammatically correct and (ii) is unambiguous	
(B)	(i) is grammatically incorrect and (ii) is unambiguous	
(C)	(i) is grammatically correct and (ii) is ambiguous	
(D)	(i) is grammatically incorrect and (ii) is ambiguous	

GATE 2 21

5

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Q.5	is to <i>surgery</i> as <i>writer</i> is to Which one of the following options maintains a similar logical relation in the above sentence?
(A)	Plan, outline
(B)	Hospital, library
(C)	Doctor, book
(D)	Medicine, grammar

6

Q. 6 - Q. 10 Multiple Choice Question (MCQ), carry TWO marks each (for each wrong answer: - 2/3).

Q.6	We have 2 rectangular sheets of paper, M and N, of dimensions 6 cm x 1 each. Sheet M is rolled to form an open cylinder by bringing the short edg of the sheet together. Sheet N is cut into equal square patches and assemble to form the largest possible closed cube. Assuming the ends of the cylinder a closed, the ratio of the volume of the cylinder to that of the cube is	
(A)	$\frac{\pi}{2}$	
(B)	$\frac{3}{\pi}$	
(C)	$\frac{9}{\pi}$	
(D)	3π	

Q.7		Items	Cost (₹) 5,400	Profit %	Marked Price (₹) 5,860	
	Р	Р				
		Q	-	25	10,000	
					esented in the above	
	ratio of difference percenta cost, to t (Profit	cost of iten the between ge is calcul the cost $\% = \frac{Selli}{2}$	n P to cost o the marke ated as the ra ing price-Cos Cost	f item Q is 3: d price and atio of the diffe $\frac{1}{2} \times 100$).	esented in the above 4. Discount is calcu- the selling price. rence between selli marked price, is	dated as the The profit
(A)	ratio of difference percenta cost, to t (Profit	cost of iten the between ge is calcul the cost $\% = \frac{Selli}{2}$	n P to cost o the marke ated as the ra ing price-Cos Cost	f item Q is 3: d price and atio of the diffe $\frac{1}{2} \times 100$).	4. Discount is calcu the selling price. rence between selli	dated as the The profit
(A) (B)	ratio of difference percenta cost, to t (Profit The disc	cost of iten the between ge is calcul the cost $\% = \frac{Selli}{2}$	n P to cost o the marke ated as the ra ing price-Cos Cost	f item Q is 3: d price and atio of the diffe $\frac{1}{2} \times 100$).	4. Discount is calcu the selling price. rence between selli	dated as the The profi
	ratio of difference percenta cost, to t (Profit The disc 25	cost of iten the between ge is calcul the cost $\% = \frac{Selli}{2}$	n P to cost o the marke ated as the ra ing price-Cos Cost	f item Q is 3: d price and atio of the diffe $\frac{1}{2} \times 100$).	4. Discount is calcu the selling price. rence between selli	dated as the The profi

Q.8	There are five bags each containing identical sets of ten distinct chocolates One chocolate is picked from each bag. The probability that at least two chocolates are identical is	
(A)	0.3024	
(B)	0,4235	
(C)	0.6976	
(D)	0.8125	

GATE 2 21

Q.9	Given below are two statements 1 and 2, and two conclusions I and II. Statement 1: All bacteria are microorganisms. Statement 2: All pathogens are microorganisms. Conclusion I: Some pathogens are bacteria. Conclusion II: All pathogens are not bacteria. Based on the above statements and conclusions, which one of the following options is logically CORRECT?
(A)	Only conclusion I is correct
(B)	Only conclusion II is correct
(C)	Either conclusion I or II is correct.
(D)	Neither conclusion I nor II is correct.

Q.10	Some people suggest anti-obesity measures (AOM) such as displaying calorie information in restaurant menus. Such measures sidestep addressing the core problems that cause obesity: poverty and income inequality. Which one of the following statements summarizes the passage?
(A)	The proposed AOM addresses the core problems that cause obesity.
(B)	If obesity reduces, poverty will naturally reduce, since obesity causes poverty.
(C)	AOM are addressing the core problems and are likely to succeed.
(D)	AOM are addressing the problem superficially.

Q.1 – Q.15 Multiple Choice Question (MCQ), carry ONE mark each (for each wrong answer: – 1/3).

Q.1	An ordinary differential equation (ODE), $\frac{dy}{dx} = 2y$, with an initial condition $y(0) = 1$, has the analytical solution $y = e^{2x}$. Using Runge-Kutta second order method, numerically integrate the ODE to calculate y at $x = 0.5$ using a step size of $h = 0.5$. If the relative percentage error is defined as,		
	$\varepsilon = \left \frac{y_{analytical} - y_{numerical}}{y_{analytical}} \right \times 100$ then the value of ε at $x = 0.5$ is		
(A)	0.06		
(B)	0.8		
(C)	4.0		
(D)	8.0		

Q.2	The function $\cos(x)$ is approximated using Taylor series around $x = 0$ $\cos(x) \approx 1 + a x + b x^2 + c x^3 + d x^4$. The values of <i>a</i> , <i>b</i> , <i>c</i> and <i>d</i> are		
(A)	a = 1, b = -0.5, c = -1, d = -0.25		
(B)	a = 0, b = -0.5, c = 0, d = 0.042		
(C)	a = 0, b = 0.5, c = 0, d = 0.042		
(D)	a = -0.5, $b = 0$, $c = 0.042$, $d = 0$		

CH - Copyright © GATE 2021

GATE 2 21

Q.3	The heat of combustion of methane, carbon monoxide and hydrogen are P , Q and R respectively. For the reaction below,			
	$CH_4 + H_2O \longrightarrow CO + 3H_2$			
_	the heat of reaction is given by			
(A)	P-Q-3R			
(B)	Q + 3R - P			
	P - Q = R			
(D)	Q + R - P			

Q.4	A batch settling experiment is performed in a long column using a dilute dispersion containing equal number of particles of type A and type B in water (density 1000 kg m ⁻³) at room temperature.
	Type A are spherical particles of diameter 30 μ m and density 1100 kg m ⁻³ . Type B are spherical particles of diameter 10 μ m and density 1900 kg m ⁻³ . Assuming that Stokes' law is valid throughout the duration of the experiment, the settled bed would
(A)	consist of a homogeneous mixture of type A and type B particles
(B)	consist of type B particles only
(C)	be completely segregated with type B particles on top of type A particles
(D)	be completely segregated with type A particles on top of type B particles

Q.5	A three-dimensional velocity field is given by $V = 5x^2y i + Cy j - 10xyz k$, where l, j, k are the unit vectors in x, y, z directions, respectively, describing a cartesian coordinate system. The coefficient C is a constant. If V describes an incompressible fluid flow, the value of C is
(A)	-1
(B)	0
(C)	1
(D)	5

Q.6	Heat transfer coefficient for a vapor condensing as a film on a vertical surface is given by	
(A)	Dittus-Boelter equation	
(B)	Nusselt theory	
(C)	Chilton-Colburn analogy	
(D)	Sieder-Tate equation	

Q.7	In a double-pipe heat exchanger of 10 m length, a hot fluid flows in the annulus and a cold fluid flows in the inner pipe. The temperature profiles of the hot (T_h) and cold (T_c) fluids along the length of the heat exchanger $(x, such that x \ge 0)$, are given by		
	$T_h(x) = 80 - 3x$		
	$T_c(x) = 20 + 2x$		
	where T_h and T_c are in °C, and x is in meter.		
	The logarithmic mean temperature difference (in °C) is		
(A)	24.6		
(B)	27.9		
(C)	30.0		
(D)	50.0		

Q.8	For a shell-and-tube heat exchanger, the clean overall heat transfer coefficient is calculated as 250 W m ⁻² K ⁻¹ for a specific process condition. It is expected that the heat exchanger may be fouled during the operation, and a fouling resistance of 0.001 m ² K W ⁻¹ is prescribed. The dirt overall heat transfer coefficient is W m ⁻² K ⁻¹ .
(A)	100
(B)	150
(C)	200
(D)	250

Q.9	In reverse osmosis, the hydraulic pressure and osmotic pressure at the feed side of the membrane are P_1 and π_1 , respectively. The corresponding values are P_2 and π_2 at the permeate side. The membrane, feed, and permeate are at the same temperature. For equilibrium to prevail, the general criterion that should be satisfied is
(A)	$\pi_1 = \pi_2$
(B)	$P_1 = P_2$
(C)	$P_1 + \pi_1 = P_2 + \pi_2$
(D)	$\mathbf{P}_1 - \pi_1 = \mathbf{P}_2 - \pi_2$

Q.10	Ethylene adsorbs on the vacant active sites V of a transition metal catalyst according to the following mechanism.
	$C_2H_4 + 2V \iff V \bigvee V$ If N_T , N_F and $N_{C_2H_4}$ denote the total number of active sites, number of
	vacant active sites and number of adsorbed C ₂ H ₄ molecules, respectively, the balance on the total number of active sites is given by
(A)	$N_{\tau} = N_{\nu} + N_{C_2H_4}$
(B)	$N_T = N_V + 2N_{C_2H_4}$
(C)	$N_T = 2N_F + N_{C_2H_4}$
(D)	$N_T = N_F + 0.5 N_{C_3 H_4}$

Q.11	Which of the following is NOT a standard to transmit measurement and control signals?		
(A)	4 – 20 mA		
(B)	3 – 15 psig		
(C)	0-100 %		
(D)	1-5 VDC		

Graduate Aptitude Test In Engineering 2021 Organising Institute - IIT Bombay

Chemical Engineering (CH)

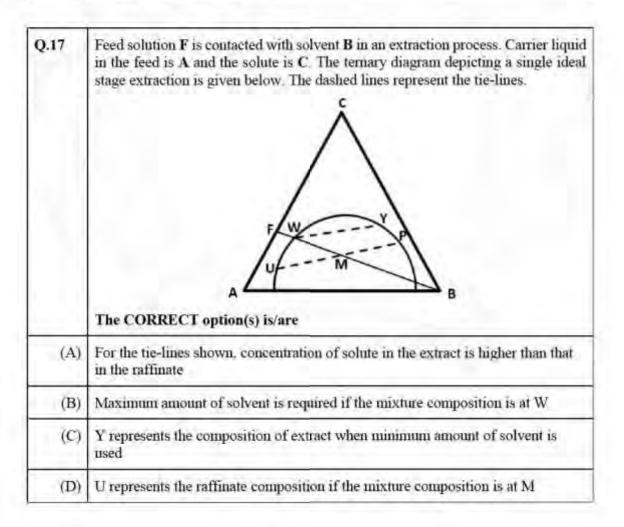
Q.12	A feedforward controller can be used only if
(A)	the disturbance variable can be measured
(B)	the disturbance variable can be manipulated
(C)	the disturbance variable can be ignored
(D)	regulatory control is not required

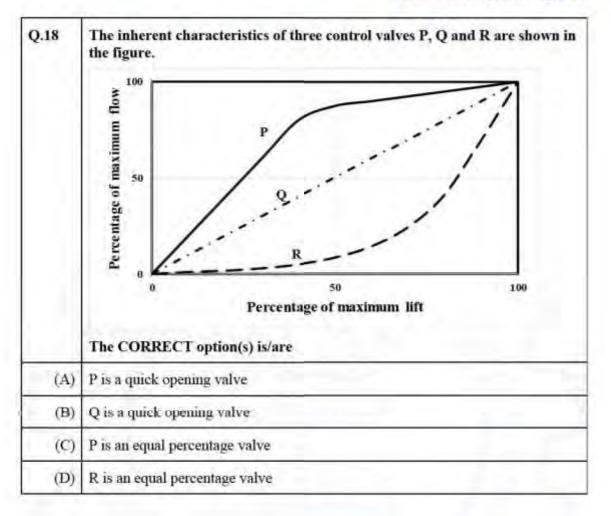
Q.13	A) Fixed capital investment Gross annual sales			
(A)				
(B)	Gross annual sales Fixed capital investment	1.1		
(C)	Fixed capital investment Average selling price of the product			
(D)	Gross annual sales Average selling price of the product	1.1		

Q.14	A principal amount is charged a nominal annual interest rate of 10%. If the interest rate is compounded continuously, the final amount at the end of one year would be
(A)	higher than the amount obtained when the interest rate is compounded monthly
(B)	lower than the amount obtained when the interest rate is compounded annually
(C)	equal to 1.365 times the principal amount
(D)	equal to the amount obtained when using an effective interest rate of 27.18%

CH - Copyright © GATE 2021

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay


Q.15	Match the common name of chemicals in Group – 1 with their chemical formulae in Group – 2.			
		Group – 1		Group – 2
	P	Gypsum	I	Ca(H ₂ PO ₄) ₂
	Q	Dolomite	п	CaSO4.2H2O
	R	Triple superphosphate	ш	CaCO ₃ .MgCO ₃
	The correct combination is:			
(A)	P - III, Q - II, R - I			
(B)	P – III,	Q - I, R - II		
(C)	P-II,	Q – III, R – I		
(D)	P-II,	Q – I, R – III		



Q.16 - Q.18 Multiple Select Question (MSQ), carry ONE mark each (no negative marks).

Q.16	For the function $f(x) = \begin{cases} -x, & x < 0 \\ x^2, & x \ge 0 \end{cases}$ the CORRECT statement(s) is/are
(A)	f(x) is continuous at $x = 1$
(B)	f(x) is differentiable at $x = 1$
(C)	f(x) is continuous at $x = 0$
(D)	f(x) is differentiable at $x = 0$

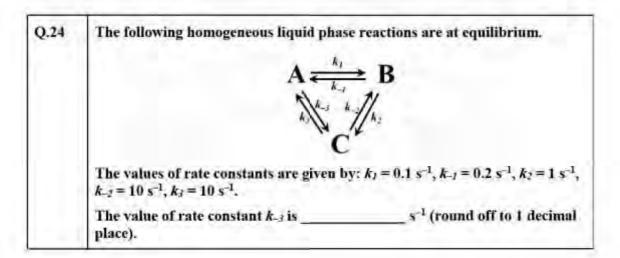
Q.19 - Q.25 Numerical Answer Type (NAT), carry ONE mark each (no negative marks).

Q.19 A source placed at the origin of a circular sample holder (radius r = 1 m) emits particles uniformly in all directions. A detector of length l = 1 cm has been placed along the perimeter of the sample holder. During an experiment, the detector registers 14 particles. The total number of particles emitted during the experiment is

Q.20	A, B, C and D are vectors of length 4.					
	Provide Street, Street	A =	[a1	a2	a_3	a4]
		B =	[b1	b_2	b_3	b ₄]
		<i>C</i> =	[c1	C2	C3	C4]
		D =	$[d_1$	d2	d_3	d4]
	It is known that B is no	t a scalar	multip	ole of	A. A	lso, C is linearly independent of
	A and B . Further, $D =$	3A + 2B	+ C.			

Q.21	The van der Waals equation of state is given by				
	8 <i>T</i> _r 3				
	$P_r = \frac{8T_r}{3v_r - 1} - \frac{3}{v_r^2}$				
	where P_r , T_r and v_r represent reduced pressure, reduced temperature and reduced molar volume, respectively. The compressibility factor at critical point (z_c) is 3/8.				
	If $v_r = 3$ and $T_r = 4/3$, then the compressibility factor based on the van der Waals equation of state is (round off to 2 decimal places).				

Q.22 Consider a steady flow of an incompressible, Newtonian fluid through a smooth circular pipe. Let $\alpha_{laminar}$ and $\alpha_{turbulent}$ denote the kinetic energy correction factors for laminar and turbulent flow through the pipe, respectively. For turbulent flow through the pipe


$$\alpha_{turbulent} = \left(\frac{V_0}{\overline{V}}\right)^3 \frac{2n^2}{(3+n)(3+2n)}$$

Here, \overline{V} is the average velocity, V_0 is the centerline velocity, and n is a parameter. The ratio of average velocity to the centerline velocity for turbulent flow through the pipe is given by

$$\frac{\overline{V}}{V_0} = \frac{2n^2}{(n+1)(2n+1)}$$

For n = 7, the value of $\frac{\alpha_{turbulent}}{\alpha_{laminar}}$ is _____ (round off to 2 decimal places).

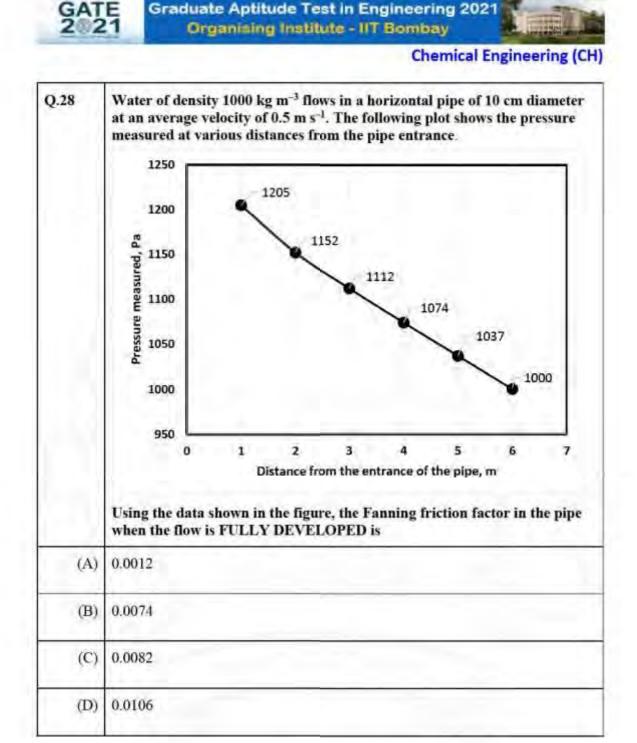
Q.23The molar heat capacity at constant pressure
$$C_p$$
 (in J mol⁻¹ K⁻¹) for n-
pentane as a function of temperature (T in K) is given by
 $\frac{C_p}{R} = 2.46 + 45.4 \times 10^{-3} T - 14.1 \times 10^{-6} T^2$. Take R = 8.314 J mol⁻¹ K⁻¹.
At 1000 K, the rate of change of molar entropy of n-pentane with respect to
temperature at constant pressure is ______ J mol⁻¹ K⁻² (round off to 2
decimal places).

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Chemical Engineering (CH)

 Q.25
 A company invests in a recovery unit to separate valuable metals from effluent streams. The total initial capital investment of this unit is Rs. 10 lakhs. The recovered metals are worth Rs. 4 lakhs per year.

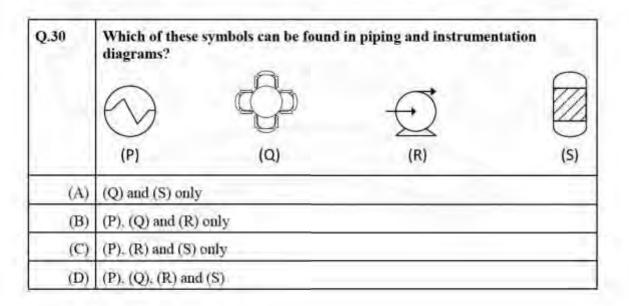
 If the annual return on this investment is 15%, the annual operating costs should be ______ lakhs of rupees (correct to 1 decimal place).



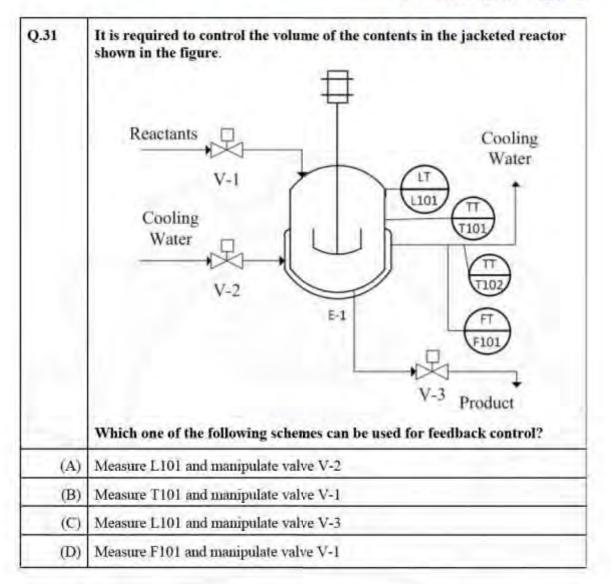
Q.26 - Q.33 Multiple Choice Question (MCQ), carry TWO mark each (for each wrong answer: - 2/3).

Q.26	Let A be a square matrix of size $n \times n$ $(n > 1)$. The elements of $A = \{a_{ij}\}$ are given by $a_{ij} = \begin{cases} i \times j, & if \ i \ge j \\ 0, & if \ i < j \end{cases}$ The determinant of A is
(A)	0
(B)	1
(C)	<i>n</i> !
(D)	$(n!)^2$

Q.27	Consider a fluid confined between two horizontal parallel plates and subjected to shear flow.
	In the first experiment, the plates are separated by a distance of 1 mm. It is found that a shear stress of 2 N m ⁻² has to be applied to keep the top plate moving with a velocity of 2 m s ⁻¹ , while the other plate is fixed.
	In the second experiment, the plates are separated by a distance of 0.25 mm. It is found that a shear stress of 3 N m ⁻² has to be applied to keep the top plate moving with a velocity of 1 m s ⁻¹ , while the other plate is fixed. In the range of shear rates studied, the rheological character of the fluid is
(A)	Newtonian
(B)	Pseudoplastic
(C)	Dilatant
(D)	Ideal and inviscid


CH - Copyright © GATE 2021

22


Q.29	In a solvent regeneration process, a gas is used to strip a solute from a liquid in a countercurrent packed tower operating under isothermal condition. Pure gas is used in this stripping operation. All solutions are dilute and Henry's law, $y^* = mx$, is applicable. Here, y^* is the mole fraction of the solute in the gas phase in equilibrium with the liquid phase of solute mole fraction x , and m is the Henry's law constant. Let x_1 be the mole fraction of the solute in the leaving liquid, and x_2 be the mole fraction of solute in the entering liquid.
	When the value of the ratio of the liquid-to-gas molar flow rates is equal to <i>m</i> , the overall liquid phase Number of Transfer Units, NTUOL, is given by
(A)	$\frac{x_2 - x_1}{x_1}$
(B)	$\frac{x_2 + x_1}{x_2 - x_1}$
(C)	$ln\left(\frac{x_2}{x_1}\right)$
(D)	$ln\left(\frac{x_2 + x_1}{x_2 - x_1}\right)$

24

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Q.32	Which of the following is NOT a necessary condition for a process under closed-loop control to be stable?
(A)	Dead-time term(s) must be absent in the open-loop transfer function.
(B)	Roots of the characteristic equation must have negative real part
(C)	All the elements in the left (first) column of the Routh array must have the same sign
(D)	Open-loop transfer function must have an amplitude ratio less than 1 at the critical frequency

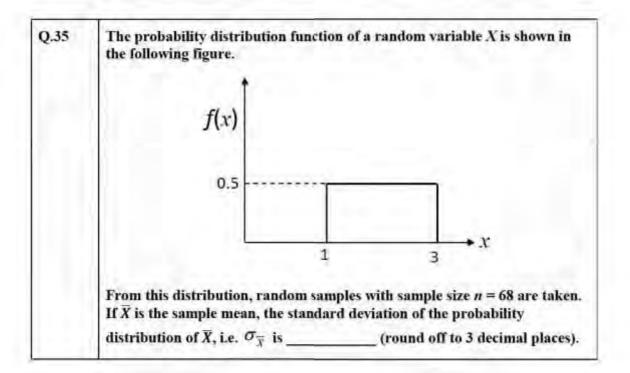
Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Chemical Engineering (CH)

Q.33	Match the reaction in Group - 1 with the reaction type in Group - 2.						
	Group – 1			Group - 2			
	Р	Methylcyclohexane \rightarrow Toluene + 3H ₂	1	Dehydrocyclization			
	Q	$Ethylcyclopentane \rightarrow Methylcyclohexane$	п	Cracking			
	R	n-Octane \rightarrow Ethylbenzene + 4H ₂		Dehydrogenation			
	S	n-Octane \rightarrow n-Pentane + Propylene	IV	Isomerization			
	The correct combination is:						
(A)	$\mathbf{P} - \mathbf{I}$	I, Q - III, R - I, S - IV					
(B)	P-I	II, Q - IV, R - I, S - II					
(C)	$\mathbf{P} - \mathbf{I}$	II, Q - IV, R - II, S - I					
(D)	P - 1	, Q – IV, R – III, S – II					

CH - Copyright @ GATE 2021

GATE


@21

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Chemical Engineering (CH)

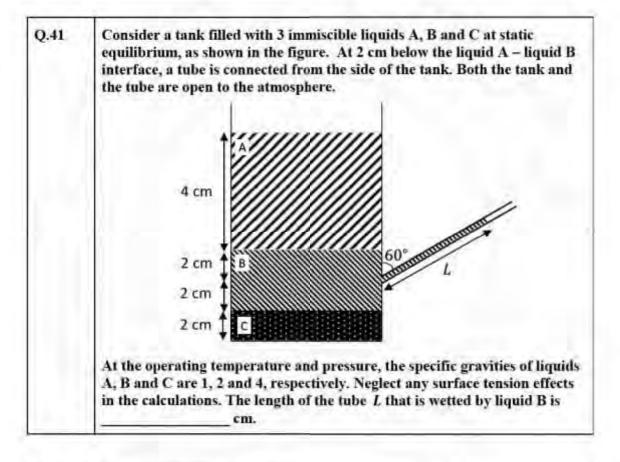
Q.34 - Q.55 Numerical Answer Type (NAT), carry TWO mark each (no negative marks).

Q.34 To solve an algebraic equation f(x) = 0, an iterative scheme of the type $x_{n+1} = g(x_n)$ is proposed, where $g(x) = x - \frac{f(x)}{f'(x)}$. At the solution x = s, g'(s) = 0 and $g''(s) \neq 0$. The order of convergence for this iterative scheme near the solution is

Q.36 For the ordinary differential equation

$$\frac{d^{3}y}{dt^{3}} + 6\frac{d^{2}y}{dt^{2}} + 11\frac{dy}{dt} + 6y = 1$$
with initial conditions $y(0) = y'(0) = y''(0) = y'''(0) = 0$, the value
of $\lim_{t \to \infty} y(t) =$ _____ (round off to 3 decimal places).

Q.37	Formaldehyde is produced by the oxidation of methane in a reactor. The following two parallel reactions occur.
	$CH_4 + O_2 \longrightarrow HCHO + H_2O$
	$CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O$
	Methane and oxygen are fed to the reactor. The product gases leaving the reactor include methane, oxygen, formaldehyde, carbon dioxide and water vapor.
	60 mol s ⁻¹ of methane enters the reactor. The molar flowrate (in mol s ⁻¹) of CH ₄ , O ₂ and CO ₂ leaving the reactor are 26, 2 and 4, respectively. The molar flowrate of oxygen entering the reactor is mol s ⁻¹ .


Q.38	The combustion of carbon monoxide is carried out in a closed, rigid and insulated vessel. 1 mol of CO, 0.5 mol of O ₂ and 2 mol of N ₂ are taken initially at 1 bar and 298 K, and the combustion is carried out to completion.
	The standard molar internal energy change of reaction (Δu_R^{ϕ}) for the combustion of carbon monoxide at 298 K = -282 kJ mol ⁻¹ . At constant pressure, the molar heat capacities of N ₂ and CO ₂ are 33.314 J mol ⁻¹ K ⁻¹ and 58.314 J mol ⁻¹ K ⁻¹ , respectively. Assume the heat capacities to be independent of temperature, and the gases are ideal. Take R = 8.314 J mol ⁻¹ K ⁻¹ .
	The final pressure in the vessel at the completion of the reaction is bar (round off to 1 decimal place).

Q.39	A gaseous mixture at 1 bar and 300 K consists of 20 mol % CO2 and 80 mol% inert gas.			
	Assume the gases to be ideal. Take R = 8.314 J mol ⁻¹ K ⁻¹ .			
	The magnitude of minimum work requi mixture at 1 bar and 300 K into pure C			
	temperature and pressure is	kJ (round off to nearest		

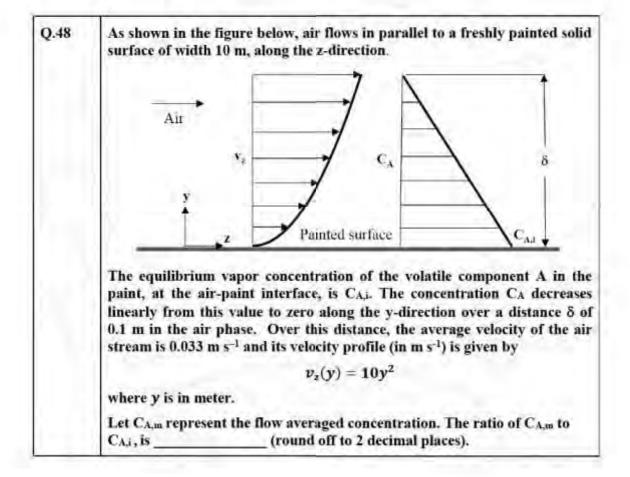
Q.40	A binary liquid mixture consists of two species 1 and 2. Let γ and x represent the activity coefficient and the mole fraction of the species, respectively. Using a molar excess Gibbs free energy model, $\ln \gamma_1 vs. x_1$ and $\ln \gamma_2 vs. x_1$ are plotted. A tangent drawn to the $\ln \gamma_1 vs. x_1$ curve at a mole fraction of $x_1 = 0.2$ has a slope $= -1.728$.
	The slope of the tangent drawn to the $\ln \gamma_2 vs. x_1$ curve at the same mole fraction is (correct to 3 decimal places).

Q.42	Seawater is passed through a column containing a bed of resin beads.	
	Density of seawater = 1025 kg m ⁻³	
	Density of resin beads = 1330 kg m^{-3}	
	Diameter of resin beads = 50 µm	
	Void fraction of the bed at the onset of fluidization = 0.4	
	Acceleration due to gravity = 9.81 m s ⁻²	
	The pressure drop per unit length of the bed at the onset of fluidization is Pa m ⁻¹ (round off to nearest integer).	

Q.43	A straight fin of uniform circular cross section and adiabatic tip has an aspect ratio (length/diameter) of 4. If the Biot number (based on radius of
	the fin as the characteristic length) is 0.04, the fin efficiency is
	% (round off to nearest integer).

Q.44	A double-effect evaporator is used to concentrate a solution. Steam is sent to the first effect at 110 °C and the boiling point of the solution in the second effect is 63.3 °C. The overall heat transfer coefficient in the first effect and second effect are 2000 W m ⁻² K ⁻¹ and 1500 W m ⁻² K ⁻¹ , respectively. The heat required to raise the temperature of the feed to the boiling point can be neglected. The heat flux in the two evaporators can be assumed to be equal.
	The temperature at which the solution boils in the first effect is °C (round off to nearest integer).

Q.45	Consider a solid slab of thickness 2L and uniform cross section A. The volumetric rate of heat generation within the slab is \hat{g} (W m ⁻³). The slab loses heat by convection at both the ends to air with heat transfer coefficient <i>h</i> . Assuming steady state, one-dimensional heat transfer, the temperature profile within the slab along the thickness is given by:
	$T(x) = \frac{gL^2}{2k} \left[1 - \left(\frac{x}{L}\right)^2 \right] + T_s for -L \le x \le L$


where k is the thermal conductivity of the slab and T_s is the surface temperature. If $T_s = 350$ K, ambient air temperature $T_{\infty} = 300$ K, and Biot number (based on L as the characteristic length) is 0.5, the maximum temperature in the slab is ______ K (round off to nearest integer).

Q.46	A distillation column handling a binary mixture of A and B is operating at total reflux. It has two ideal stages including the reboiler. The mole fraction of the more volatile component in the residue (x_n) is 0.1. The average
	relative volatility α_{AB} is 4. The mole fraction of A in the distillate (x_D) is (round off to 2 decimal places).

Q.47	In a batch drying experiment, a solid with a critical moisture content of 0.2 kg H ₂ O/kg dry solid is dried from an initial moisture content of 0.35 kg H ₂ O/kg dry solid to a final moisture content of 0.1 kg H ₂ O/kg dry solid in 5 h. In the constant rate regime, the rate of drying is 2 kg H ₂ O/(m ² .h).
	The entire falling rate regime is assumed to be uniformly linear. The equilibrium moisture content is assumed to be zero.
	The mass of the dry solid per unit area is kg/m ² (round off to nearest integer).

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Q.49	The following isothermal autocatalytic reaction,			
	$A + B \longrightarrow 2B$ $(-r_A) = 0.1C_A C_B \pmod{L^1 s^{-1}}$			
	is carried out in an ideal continuous stirred tank reactor (CSTR) operating at steady state. Pure A at 1 mol L^{-1} is fed, and 90% of A is converted in the CSTR. The space time of the CSTR is seconds.			

Q.50	Reactant A decomposes to products B and C in the presence of an enzyme in a well-stirred batch reactor. The kinetic rate expression is given by
	$-r_{A} = \frac{0.01C_{A}}{0.05 + C_{A}} \pmod{L^{11} \min^{11}}$
	If the initial concentration of A is 0.02 mol L ⁻¹ , the time taken to achieve 50% conversion of A is min (round off to 2 decimal places).

Q.51	The following homogeneous, irreversible reaction involving ideal gases,
0	$A \longrightarrow B + C (-r_A) = 0.5 C_A \pmod{L^1 s^{-1}}$
	is carried out in a steady state ideal plug flow reactor (PFR) operating at isothermal and isobaric conditions. The feed stream consists of pure A, entering at 2 m s ^{-1} .
	In order to achieve 50% conversion of A, the required length of the PFR is meter (round off to 2 decimal places).

Q.52	A system has a transfer function $G(s) = \frac{3e^{-4s}}{12s+1}$. When a step change of
	magnitude M is given to the system input, the final value of the system output is measured to be 120. The value of M is

Q.53	A process has a transfer function $G(s) = \frac{Y(s)}{X(s)} = \frac{20}{90000s^2 + 240s + 1}$.
	A process has a transfer function $G(s) = \frac{1}{X(s)} = \frac{1}{90000s^2 + 240s + 1}$
	Initially the process is at steady state with $x(t = 0) = 0.4$ and $y(t = 0) = 100$. If a step change in x is given from 0.4 to 0.5, the maximum value of y that will be observed before it reaches the new steady state is (round off to 1 decimal place).

Q.54 Operating labor requirements L in the chemical process industry is described in terms of the plant capacity C (kg day⁻¹) over a wide range (10³ - 10⁶) by a power law relationship $L = \alpha C^{\beta}$ where a and \$\beta\$ are constants. It is known that L is 60 when C is 2 × 10⁴ L is 70 when C is 6 × 10⁴ The value of L when C is 10⁵ kg day⁻¹ is _____ (round off to nearest integer).

Q.55A viscous liquid is pumped through a pipe network in a chemical plant.
The annual pumping cost per unit length of pipe is given by
$$C_{pump} = \frac{48.13 q^2 \mu}{D^4}$$
The annual cost of the installed piping system per unit length of pipe is
given by $C_{piping} = 45.92D$ Here, D is the inner diameter of the pipe in meter, q is the volumetric
flowrate of the liquid in $m^3 s^{-1}$ and μ is the viscosity of the liquid in Pa.s.
If the viscosity of the liquid is 20×10^{-3} Pa.s and the volumetric flow rate of
the liquid is $10^{-4} m^3 s^{-1}$, the economic inner diameter of the pipe is
meter (round off to 3 decimal places).

END OF THE QUESTION PAPER

Graduate Aptitude Test in Engineering (GATE 2021)

Answer Keys and Marks for Subject/Paper: Chemical Engineering (CH)

Q. No.	Session	Question Type MCQ/MSQ/NAT	Section Name	Answer Key/Range	Marks	Negative Marks
1	5	MCQ	GA	с	1	1/3
2	5	MCQ	GA	А	1	1/3
3	5	MCQ	GA	c	1	1/3
4	5	MCQ	GA	А	1	1/3
5	5	MCQ	GA	с	1	1/3
6	5	MCQ	GA	c	2	2/3
7	5	MCQ	GA	с	2	2/3
8	5	MCQ	GA	с	2	2/3
9	5	MCQ	GA	C OR D	2	2/3
10	5	MCQ	GA	D	2	2/3
1	5	MCQ	СН	D	1	1/3
2	5	MCQ	СН	В	1	1/3
3	5	MCQ	СН	А	1	1/3
4	5	MCQ	СН	А	1	1/3
5	5	MCQ	СН	В	1	1/3
6	5	MCQ	СН	В	1	1/3
7	5	MCQ.	СН	В	1	1/3
8	5	MCQ	СН	c	1	1/3
9	5	MCQ	СН	D	1	1/3
10	5	MCQ	СН	В	1	1/3

Previous Pathshala

Q. No.	Session	Question Type MCQ/MSQ/NAT	Section Name	Answer Key/Range	Marks	Negative Marks
11	5	MCQ	СН	с	1	1/3
12	5	MCQ	СН	А	1	1/3
13	5	MCQ	СН	В	1	1/3
14	5	MCQ	СН	А	1	1/3
15	5	MCQ	СН	c	1	1/3
16	5	MSQ	СН	A; B; C	1	0
17	5	MSQ	СН	A; C; D	1	0
18	5	MSQ	СН	A; D	1	0
19	5	NAT	СН	8790 to 8800	1	0
20	5	NAT	СН	3 to 3	1	0
21	5	NAT	CH	0.83 to 0.85	1	٥
22	5	NAT	СН	0.52 to 0.54	1	0
23	5	NAT	СН	0.27 to 0.29	1	0
24	5	NAT	СН	0.5 to 0.5	1	0
25	5	NAT	СН	2.5 to 2.5	1	0
26	5	MCQ	СН	D	2	2/3
27	5	MCQ	СН	В	2	2/3
28	5	MCQ	СН	В	2	2/3
29	5	MCQ	СН	А	2	2/3
30	5	MCQ	СН	с	2	2/3
31	5	MCQ	СН	c	2	2/3
32	5	MCQ	СН	A	2	2/3
33	5	MCQ	СН	В	2	2/3

Previous Pathshala

Q. No.	Session	Question Type MCQ/MSQ/NAT	Section Name	Answer Key/Range	Marks	Negative Marks
34	5	NAT	СН	2 to 2	2	0
35	5	NAT	CH	0.069 to 0.071	2	0
36	5	NAT	СН	0.161 to 0.169	2	0
37	5	NAT	СН	40 to 40	2	0
38	5	NAT	СН	8.9 to 9.1	2	0
39	5	NAT	СН	124 to 126	2	0
40	5	NAT	СН	0.432 to 0.432	2	0
41	5	NAT	СН	8 to 8	2	0
42	5	NAT	СН	1790 to 1800	2	0
43	5	NAT	СН	42 to 44	2	0
44	5	NAT	СН	89 to 91	2	0
45	5	NAT	СН	362 to 363	2	0
46	5	NAT	СН	0.63 to 0.65	2	0
47	5	NAT	СН	34 to 35	2	0
48	5	NAT	СН	0.24 to 0.26	2	0
49	5	NAT	СН	100 to 100	2	0
50	5	NAT	СН	4.44 to 4.51	2	0
51	5	NAT	СН	3.49 to 3.61	2	0
52	5	NAT	СН	40 to 40	2	0
53	5	NAT	СН	102.4 to 102.6	2	0
54	5	NAT	СН	73 to 77	2	0
55	5	NAT	СН	0.014 to 0.016	2	0

Previous Pathshala