MATHEMATICS & STATISTICS (40) (ARTS & SCIENCE)

Time: 3 Hrs.

(8 Pages)

Max. Marks: 80

General instructions:

The question paper is divided into FOUR sections.

- (1) Section A: Q. I contains Eight multiple choice type of questions, each carrying Two marks.
 - Q. 2 contains Four sub-questions, each carrying one mark.
- (2) Section B: Q. 3 to Q. 14 each carries Two marks. (Attempt any Eight)
- (3) Section C: Q. 15 to Q. 26 each carries Three marks. (Attempt any Eight)
- (4) Section D: Q. 27 to Q. 34 each carries Four marks. (Attempt any Five)
- (5) Use of log table is allowed. Use of calculator is not allowed.
- (6) Figures to the right indicate full marks.
- (7) Use of graph paper is not necessary. Only rough sketch of graph is expected.
- (8) For each MCQ, correct answer must be written along with its alphabet:

e.g. (a) / (b) / (c) / (d)....., etc.

(9) Start answers to each section on a new page.

0 3 6 0

Page 1

P.T.O

- [16] Select and write the most appropriate answer from the given alternatives for each question:
 - In \triangle ABC, if a = 2, b = 3 and $\sin A = \frac{2}{3}$, then (i)

 $\angle B =$

(a) $\frac{\pi}{4}$

(B) $\frac{\pi}{2}$

(c) $\frac{\pi}{2}$

(d) $\frac{\pi}{c}$

(2)

(ii) If $\vec{a} = 3\hat{i} - \hat{j} + 4\hat{k}$, $\vec{b} = 2\hat{i} + 3\hat{j} - \hat{k}$ and $\vec{c} = -5\hat{i} + 2\hat{j} + 3\hat{k}$, then $\overline{a} \cdot (\overline{b} \times \overline{c})$ is

(b) 110

(c)

(d) 108

(2)

(iii) The cartesian equation of the line passing through the points A (4, 2, 1) and B (2, -1, 3) is

(a) $\frac{x+4}{2} = \frac{y-2}{2} = \frac{z-1}{2}$

(b) $\frac{x-4}{-2} = \frac{y-2}{-3} = \frac{z-1}{2}$

(c) $\frac{x-4}{2} = \frac{y-2}{3} = \frac{z-1}{3}$

(d) $\frac{x-4}{z-2} = \frac{y-2}{2} = \frac{z-1}{2}$

(2)

(iv) If the line $\vec{r} = (\hat{i} - 2\hat{j} + 3\hat{k}) + \lambda(2\hat{i} + \hat{j} + 2\hat{k})$ is parallel to the plane $\vec{r} \cdot (3\hat{i} - 2\hat{j} + m\hat{k}) = 10$, then value of m is _____.

(a) -2

(b) 2

(c) ± 2

(d) 0

(2)

(v) If $f(x) = 1 - x$, for $0 < x \le 1$		
= k , for $x = 0$ is continuous at $x = 0$, then $k = $	•	
(b) -1		
(c) 2 (d) I	(2)	
(vi) The function $f(x) = x^x$ is minimum at $x = $		
(a) e (b) - c		
(c) $\frac{1}{e}$ (d) $-\frac{1}{e}$	(2)	
(vii) If $\int_{0}^{k} 4x^3 dx = 16$, then the value of k is		
(a) (c) (b) 2S (ci) 4	(2)	
(viii) Order and degree of differential equation $\frac{d^4 y}{dx^4} = \left[1 + \left(\frac{dy}{dx}\right)^2\right]^3 \text{ respectively are } \underline{\hspace{1cm}}.$		
(a) Order: 1, Degree: 4		
(b) Order: 4, Degree: 1		
(c) Order: 6, Degree: 1		
(d) Order: 1, Degree: 6	(2)	
Q. 2. Answer the following questions:		[4]
(i) Write the dual of p \land ~ p ≡ F	(1)	
(ii) Find the general solution of $\tan 2x = 0$	(1)	
(iii) Differentiate $\sin(x^2 + x)$ w. r. t. x	(1)	
(iv) If $X \sim B(n, p)$ and $n = 10$, $E(X) = 5$, then find the value of p .	(1)	

Page 3
Previous Pathshala

 $\begin{bmatrix}
 0 \\
 \hline
 3 \\
 \hline
 6 \\
 \hline
 0
 \end{bmatrix}$

P.T.O

SECTION - B

Attempt any EIGHT of the following questions:

[16]

- Q. 3. Using truth table verify that $\sim (p \vee q) \bowtie \sim p \wedge \sim q$ (2)
- **Q. 4.** Find the matrix of co-factors for the matrix $\begin{bmatrix} 1 & 3 \\ 4 & -1 \end{bmatrix}$ (2)
- Q.5. Find the angle between the lines represented by $3x^2 + 4xy 3y^2 = 0$ (2)
- Q. 6. \overline{a} and \overline{b} are non-collinear vectors. If $\overline{c} = (x-2)\overline{a} + \overline{b}$ and $\overline{d} = (2x+1)\overline{a} \overline{b}$ are collinear, then find the value of x. (2)
- Q. 7. If a line makes angles 90°, 135°, 45° with X, Y and Z axes respectively, then find its direction cosines. (2)
- Q. 8. Express the following circuit in symbolic form: (2)

- Q. Differentiate $\log (\sec x + \tan x)$ w. r. t. x. (2)
- Qt 10. Evaluate: $\int \frac{dx}{x^2 + 4x + 8}$ (2)
- Q. 11. Evaluate: $\int_{0}^{\frac{\pi}{2}} \cos^2 x \, dx$ (2)

Q. 12. Solve the differential equation
$$\frac{dy}{dx} = x^2y + y$$
 (2)

Q. 13. Find expected value of the random variable X whose probability mass function is:

X = x	1	2	3
P(X=x)	1	2	2
	5	5	5

Q. 14. If
$$y = x \log x$$
, then find $\frac{d^2 y}{dx^2}$. (2)

SECTION - C

Attempt any EIGHT of the following questions:

[24]

Q. 15. State the converse, inverse and contrapositive of the conditional statement: 'If a sequence is bounded, then it is convergent'. (3)

Q-16. Show that :
$$\sin^{-1}\left(\frac{8}{17}\right) + \sin^{-1}\left(\frac{3}{5}\right) = \sin^{-1}\left(\frac{77}{85}\right)$$
. (3)

- Q. 17. Show that the points A(2, 1, -1), B(0, -1, 0), C(4, 0, 4) and D(2, 0, 1) are coplanar. (3)
- Q. 18. If \triangle ABC is right angled at B, where A(5, 6, 4), B(4, 4, 1) and C(8, 2, x), then find the value of x. (3)
- Q. 19. Find the equation of the line passing through the point (3, 1, 2) and perpendicular to the lines $\frac{x-1}{1} = \frac{y-2}{2} = \frac{z-3}{3}$ and

$$\frac{x}{-3} = \frac{y}{2} = \frac{z}{5}$$
. (3)

0 3 6 0

P.T.O

Previous Pathshala

Q. 20. Find the distance of the point
$$\hat{i}+2\hat{j}-\hat{k}$$
 from the plane $\vec{r}\cdot(\hat{i}-2\hat{j}+4\hat{k})=10$ (3)

Q. 21. If
$$e^x + e^y = e^{x+y}$$
, show that $\frac{dy}{dx} = -e^{y-x}$ (3)

- Q. 22. The surface area of a spherical balloon is increasing at the rate of 2 cm²/sec. At what rate the volume of the balloon is increasing when the radius of the balloon is 6 cm? (3)
- Q. 23. Find the approximate value of $e^{1.005}$; given e = 2.7183. (3)
- Q. 24. Evaluate:

$$\int \frac{x^2 \cdot \tan^{-1}(x^3)}{1 + x^6} dx \tag{3}$$

Q. 25. Solve the differential equation
$$\frac{dy}{dx} + y = e^{-x}$$
 (3)

Q. 26. If
$$f(x) = kx$$
, $0 < x < 2$

= 0, otherwise,

is a probability density function of a random variable X, then find:

(i) Value of k,

(ii)
$$P(1 < X < 2)$$
.

SECTION - D

Attempt any FIVE of the following questions:

[20]

Q.27. Prove that a homogeneous equation of degree two in x and y i.e. $ax^2 + 2hxy + by^2 = 0$ represents a pair of lines passing through the origin, if $h^2 - ab \ge 0$. (4)

0 3 6 0

Page 6

Q. 28. Solve the following linear programming problem:

Maximise: z = 150x + 250y

Subject to ; $4x + y \le 40$

$$3x + 2y \le 60$$

$$x \ge 0$$

$$v \ge 0 \tag{4}$$

Q. 29. Solve the following equations by the method of reduction:

$$x + 3y + 3z = 12$$

$$x + 4y + 4z = 15$$

$$x + 3y + 4z = 13 \tag{4}$$

Q. 30. In \triangle ABC, if a+b+c=2s, then prove that

$$\sin\left(\frac{A}{2}\right) = \sqrt{\frac{(s-b)(s-c)}{bc}}$$
, with usual notations. (4)

Q. 31. Function f(x) is continuous on its domain [-2, 2], where

$$f(x) = \frac{\sin ax}{x} + 2, \text{ for } -2 \le x < 0$$
$$= 3x + 5, \text{ for } 0 \le x \le 1$$

$$=\sqrt{x^2+8}-b$$
, for $1 < x \le 2$

Find the value of a+b+2.

(4)

Q. 32. Prove that:

$$\int \sqrt{x^2 + a^2} \cdot dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \log |x + \sqrt{x^2 + a^2}| + c$$
 (4)

Q. 33. A fair coin is tossed 8 times. Find the probability that:

- (i) it shows no head
- (ii) it shows head at least once. (4)

Q. 34. Prove that:

$$\int_{0}^{2a} f(x) dx = \int_{0}^{a} f(x) dx + \int_{0}^{a} f(2a - x) dx$$
 (4)

