खण्ड - अ / SECTION - A

(वस्तुनिष्ठ प्रश्न / Objective Type Questions)

- यदि A={5,6}; इस समुच्यय पर कितनी द्विचर संक्रियाएँ परिभाषित हो सकती हैं? Let A={5,6}; how many binary operations can be defined on this set?
 - (A) 8

(B) 10

(C) 16

- (D) 20
- माना कि $A = \{1, 2, 3\}$, निम्नलिखित में किस फलन $f: A \rightarrow A$ का प्रतिलोम फलन प्राप्त नहीं होगा? Let $A = \{1, 2, 3\}$, which of the following functions $f : A \rightarrow A$ does not have an inverse function?
 - (A) {(1,1), (2,2), (3,3)}

(B) {(1\sqrt{2}), (2,1), (3,1)}

- (C) {(1,3), (3,2), (2,1)} (D) {(1,2), (2,3), (3,1)}
- यदि $A = \{1, 2, 3\}$, $B = \{6, 7, 8\}$ तथा $f : A \rightarrow B$ एक फलन है इस प्रकार कि f(x) = x + 5, तो f निम्नलिखित में से किस प्रकार का फलन है?
 - (A) अंतःक्षेपी

(B) एकैक आच्छादक

(C) अनेकैक आच्छादक

(D) अचर फलन

If $A = \{1, 2, 3\}$ $B = \{6, 7, 8\}$ and $f : A \rightarrow B$ is a function such that f(x) = x + 5 then what type of a function is f?

(A) into

(B) one - one onto

(C) many - one onto

- (D) Constant function
- वास्तविक संख्याओं के समुच्चय में संबंध "छोटा है" निम्नलिखित में कौन सा संबंध है?
 - (A) केवल सममित

(B) केवल संक्रामक

(C) केवल स्वतृल्य

(D) त्ल्यता संबंध

What type of a relation is "Less than" in the set of real numbers?

(A) only symmetric

(B) only transitive

(C) only reflexive

(D) equivalence relation

 $\cos^{-1}\left(\cos\frac{8\pi}{5}\right) =$

[121/327]

Page 2 of 16

6.
$$\cos^{-1}(2x-1) =$$

(A) 2 cos 4x

(B) $\cos^{-1} \sqrt{x}$

(C) $2\cos^{-1}\sqrt{x}$

(D) इनमें से कोई नहीं

$$\cos^{-1}(2x-1) =$$

(A) 2 cos 1 x

(B) $\cos^{-1} \sqrt{x}$

(C) $2\cos^{-1}\sqrt{x}$

(D) None of these

7.
$$2 \cot^{-1} 3 + \cot^{-1} 7 =$$

(A) $\frac{\pi}{2}$

(B) $\frac{\pi}{4}$

(C) n

- $\frac{\pi}{6}$
- 8. $\tan^{-1}(1) + \cos^{-1}(\frac{-1}{2}) + \sin^{-1}(-1/2) =$
 - (A) $\frac{\pi}{4}$

(B) 3π 4

(C) $\frac{-\pi}{4}$

- (D) $\frac{\pi}{2}$
- 9. यदि $\times \in \mathbb{R}$ और $\Delta = \begin{bmatrix} a & b \\ d \end{bmatrix}$ वो $\times \Delta = \begin{bmatrix} a & b \\ d \end{bmatrix}$
 - (A) $\begin{vmatrix} \lambda a & \lambda b \\ \lambda c & \lambda d \end{vmatrix}$

 $(B) \begin{vmatrix} xa & b \\ c & d \end{vmatrix}$

(C) $\begin{vmatrix} \lambda a & b \\ \lambda c & d \end{vmatrix}$

- (D) इनमें से कोई नहीं
- If $\lambda \in \mathbb{R}$ and $\Delta = \begin{vmatrix} a & b \\ c & d \end{vmatrix}$ then $\lambda \Delta = \frac{1}{2}$
- (A) $\begin{vmatrix} \lambda a & \lambda b \\ \lambda c & \lambda d \end{vmatrix}$

(B) $\begin{vmatrix} \times a & b \\ c & d \end{vmatrix}$

(C) | \(\times a \) b | \(\times c \) d |

6.
$$\cos^{-1}(2x-1) =$$

(A) 2 cos +1 x

(B) $\cos^{-1} \sqrt{x}$

(C) $2\cos^{-1}\sqrt{x}$

(D) इनमें से कोई नहीं

$$\cos^{-1}(2x-1) =$$

(B) $\cos^{-1} \sqrt{x}$

(A) 2 cos -1 x

(6) 005 VA

(C)
$$2\cos^{-1}\sqrt{x}$$

(D) None of these

7.
$$2 \cot^{-1} 3 + \cot^{-1} 7 =$$

(A) $\frac{\pi}{2}$

(B) $\frac{\pi}{4}$

(C) π

(D) $\frac{\pi}{6}$

8.
$$\tan^{-1}(1) + \cos^{-1}(\frac{-1}{2}) + \sin^{-1}(-1/2) = \frac{1}{2}$$

- tan (i) + sto
- $(C) \quad \frac{-\pi}{4}$

 $\binom{(D)}{2}$

9. यदि
$$\times \in \mathbb{R}$$
 और $\Delta = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ तो $\Delta \Delta$
(A) $\begin{vmatrix} \times a & \times b \\ \times c & \times d \end{vmatrix}$

(B) $\begin{vmatrix} \times a & b \\ c & d \end{vmatrix}$

(C)
$$\begin{vmatrix} \times a & b \\ \times c & d \end{vmatrix}$$

(D) इनमें से कोई नहीं

If
$$\lambda \in \mathbb{R}$$
 and $\Delta = \begin{vmatrix} a & b \\ c & d \end{vmatrix}$ then $\lambda \Delta = \begin{bmatrix} a & b \\ c & d \end{vmatrix}$

(A) $\begin{vmatrix} xa & xb \\ xc & xd \end{vmatrix}$

(B) $\begin{vmatrix} \times a & b \\ c & d \end{vmatrix}$

(C) $\begin{vmatrix} \lambda a & b \\ \lambda c & d \end{vmatrix}$

$$\begin{vmatrix} x+1 & x+2 & x+a \\ x+2 & x+3 & x+b \\ x+3 & x+4 & x+c \end{vmatrix}$$

(A) 3

(B) -3

(C) 0

(D) 1

(A) -9

(B) 14

(C) $\frac{1}{2}$

(D) इनमें से कोई नहीं

If 7 and 2 are two roots of the equation

then the third root is-

12. यदि
$$\omega \neq 1$$
, $\omega^3 = 1$ तथा

$$\begin{vmatrix} x + 1 & \omega & \omega^2 \\ \omega & x + \omega^2 & 1 \end{vmatrix} = 0 \text{ then } x =$$

(A) 1

(B) w

(C) w2

(D) 0

13.
$$again A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$$
 site $A + A' = I_2$ to $A = I_2$ to

If
$$A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$$
 and $A + A' = I_2$ then $\alpha = I_2$

(A) T

(B)

Page 4 of 16

14,	 यदि A एक वर्ग आव्यूह हो तो A + A' एव (A) समित आव्यह 	
	(C) शून्य आव्यूह	(B) विषम समित आब्यूह (D) एकांक आव्यूह
	If A be a square matrix. Then A + A	and the second s
	FAI Crosses at 1	(B) Skew symmetric matrix
	(C) Null matrix	(D) Unit matrix
15.	यदि A एक 3×3 आव्यूह हो ताकि $A^2 =$	A , तो $(A + I_3)^3 - 7A$ किसके बराबर होगा?
	If A is a matrix of order 3×3 , such that	that $A^2 = A$ then $(A + I_3)^3 - 7A$ is equal to?
	(A) I ₃	(B) A
16	(C) 3A	(D) I ₃ - A
16.	माना कि A एक व्युक्तमणाय आवाह है जि	प्रान्त राम 2×2 है, तो adj A =
	Let A be a non-singular matrix of the	e order 2×2 then adj A =
	(A) 2 A	(B) A
	(C) A ?	CONTAINS OF THE PARTY OF THE PA
177		
11.	$\frac{d}{dx} \left[\log \left(\sec x + \tan x \right) \right] =$	Challe
	(A)	(B) sec x
	sec x + tan x	The state of the s
	(C) tan x	(D) sec x + tan x
18.	यदि If $x^2 y^3 = (x + y)^5$ तो then $\frac{dy}{dx} =$	
	X	(B) <u>y</u>
	(A) $\frac{x}{y}$	(D) X
	(C) -y	(D) -x
	X	У
19.	$\frac{d}{dx} \left[\tan^{-1} \sqrt{1+x^2} - \cot^{-1} \left(-\sqrt{1+x^2} \right) \right]$	(2) =
	dx	
	(Α) π	(B) 1
	(C) 0	(D) $\frac{2x}{\sqrt{2x}}$
		$\sqrt{1+x^2}$

$$20. \quad \frac{d(2^x)}{d(3^x)} =$$

(A) $\left(\frac{2}{3}\right)^x$

(B) $\frac{2^{x-1}}{3^{x-1}}$

(C) $\left(\frac{2}{3}\right)^s \log_3 2$

- (D) $\left(\frac{2}{3}\right)^s \log_2 3$
- 21. $f(x) = \sqrt{3} \sin x + \cos x$ का मान महत्तम होगा जब x का मान होगा— $f(x) = \sqrt{3} \sin x + \cos x$ is maximum then value of $x = \dots$
 - (A) $\frac{\pi}{6}$

(B) $\frac{\pi}{2}$

(C) $\frac{\pi}{3}$

- (D) $\frac{\sqrt{t}}{4}$
- 22. यदि $y = \log \cos x^2$, तो $x = \sqrt{\pi}$ पर $\frac{dy}{dx}$ का मान है-

If $y = \log \cos x^2$, then $\frac{dy}{dx}$ at $x = \sqrt{\pi}$ has the value-

(A) I

(B) $\frac{\pi}{4}$

(C) 0

- (D) $\sqrt{\pi}$
- 23. वक्र $x^2 + y^2 = a^2$ के बिंदु (x_1, y_1) पर स्पर्श रेखा का समीकरण है— Equation of the tangent to the curve $x^2 + y^2 = a^2$ at (x_1, y_1) is
 - $(A) \quad xx_1 yy_1 = 0$

(B) $xx_1 + yy_1 = 0$

 $(C) \quad xx_1 - yy_1 = a^2$

- (D) $xx_1 + yy_1 = a^2$
- 24. $\frac{d}{dx} \left[\lim_{x \to a} \frac{x^5 a^5}{x a} \right] =$
 - (A) 5a4

(B) $5x^4$

(C) 1

(D) 0

- 25. $\int \sqrt{1 + \cos 2x} \, dx =$
 - (A) $\sqrt{2} \cos x + c$

(B) $\sqrt{2} \sin x + c$

(C) $-\cos x - \sin x + c$

(D) $\sqrt{2} \sin \frac{x}{2} + c$

26.
$$\int x^2 \cdot e^{x^3} dx =$$

(A) $e^{x^3} + c$

(B) $\frac{1}{3} e^{x^3} + c$

(C) $e^{x^2} + c$

(D) $\frac{1}{3} e^{x^2} + c$

- $27. \quad \int \frac{xe^x}{(x+1)^2} \, \mathrm{d}x =$
 - $(A) \quad \frac{e^x}{(x+1)^2} + c$

(B) $\frac{-e^x}{x+1} + c$

(C) $\frac{e^x}{x+1} + c$

(D) $\frac{-e^x}{(x+1)^2} + c$

- 28. $\int \frac{dx}{a^2 + x^2} =$
 - (A) $\frac{1}{a} \tan^4 \frac{a}{x} + c$

- (B) $\tan^{-1}\frac{x}{a} + c$
- (C) $\frac{1}{a} \tan^{-1} \frac{x}{a} + c$
- (D) $\frac{1}{a} \tan^{-1} x + c$
- 29. यदि f(-x) = -f(x) तो $\int_{-a}^{a} f(x) dx =$

If f(-x) = -f(x) then $\int_{-a}^{a} f(x) dx =$

(A) $2\int_0^a f(x)dx$

(B) 0

(C) 1

- (D) -1
- 30. $\int_{\alpha}^{\beta} \varphi(x) dx + \int_{\beta}^{\alpha} \varphi(x) dx =$
 - (A) 1

- (B) $2 \int_{\alpha}^{\beta} \varphi(x) dx$
- (C) $-2 \int_{B}^{\alpha} \varphi(x) dx =$
- (D) 0
- 31. x अक्ष और $y = \sin x$ के बीच x = 0 से $x = \frac{\pi}{2}$ तक के क्षेत्र का क्षेत्रफल है—
 - (A) 2

(B) -1

(C) 1

(D) इनमें से कोई नहीं

Area between the x - axis and the curve $y = \sin x$, from x = 0 to $x = \frac{\pi}{2}$ is

(A) 2

(B) -1

(C) 1

32.
$$\int_0^1 (x) dx =$$

(B) 1

(C) 2

(D) $\frac{1}{2}$

33. अवकल समीकरण
$$1 + \left(\frac{dy}{dx}\right)^2 = \left(\frac{d^2y}{dx^2}\right)^3$$
 की कोटि और घात है—

- (A) कोटि = 2, घात = 3
- (B) कोटि = 1, घात = 2
- (C) कोटि = 2, घात = 2
- (D) इनमें से कोई नहीं

The differential equation $1 + \left(\frac{dy}{dx}\right)^2 = \left(\frac{d^2y}{dx^2}\right)^3$ is of order =...... and degree =

- (A) order = 2, degree = 3
- (B) order = 1, degree = 2
- (C) order = 2, degree = 2
- (D) None of these

34. अवकल समीकरण ydx - xdy = xydx का हल है-

(A)
$$\frac{y^2}{2} - \frac{x^2}{2} = xy + c$$
 (B) $x = kye^x$

Solution of the differential equation ydx - xdy = xydx is

(A)
$$\frac{y^2}{2} - \frac{x^2}{2} = xy + c$$

(B) $x = kye^x$

(C) $x = kye^y$

(D) None of these

35. समीकरण $\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}$ का समाकलन गुणक है—

(A) log x

(B) x

(C) -

(D) इनमें से कोई नहीं

Integrating factor (I.F.) of differential equation $\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}$ is

(A) log x

(B) x

(C) 1/x

36.
$$xdx + \frac{xdy - ydx}{x^2 + y^2} = 0$$
 का हल है—

Solution of $xdx + \frac{xdy - ydx}{x^2 + y^2} = 0$ is-

(A)
$$\frac{x^2}{2} + \tan^{-1} \frac{x}{y} = k$$
 (B) $\frac{x^2}{2} + \tan^{-1} \frac{y}{x} = k$

(B)
$$\frac{x^2}{2} + \tan^{-1} \frac{y}{x} = k$$

(C)
$$\frac{x^2}{2} - \tan^{-1} \frac{x}{y} = k$$
 (D) $\frac{x^2}{2} - \tan^{-1} \frac{y}{x} = k$

(D)
$$\frac{x^2}{2} - \tan^{-1} \frac{y}{x} = k$$

37. यदि $\vec{a} = \vec{j} + \vec{j} + 2\vec{k}$ तो \vec{a} की दिशा में संगत इकाई सदिश $\hat{a} =$

(A)
$$\frac{\vec{i} + \vec{j} + \vec{k}}{\sqrt{6}}$$

$$(B) \frac{i+j+2k}{\sqrt{6}}$$

(C)
$$\frac{\vec{i} + \vec{j} + 2\vec{k}}{6}$$

If $\vec{a} = \vec{j} + \vec{j} + 2\vec{k}$, then the corresponding unit vector \hat{a} in the direction of \vec{a}

(A)
$$\frac{\vec{i} + \vec{j} + \vec{k}}{\sqrt{6}}$$

(B)
$$\frac{\vec{i} + \vec{j} + 2\vec{k}}{\sqrt{6}}$$

(C)
$$\frac{\vec{i} + \vec{j} + 2\vec{k}}{6}$$

38. सदिश $3\vec{i} - 4\vec{j} + 12\vec{k}$ की दिक् कोज्याएं हैं—

The direction cosines of the Vector $\vec{3i} - 4\vec{j} + 12\vec{k}$ is

(A) $\frac{3}{13}$, $\frac{4}{13}$, $\frac{12}{13}$

- (B) $\frac{3}{13}, \frac{-4}{13}, \frac{12}{13}$
- (C) $\frac{3}{\sqrt{13}}$, $\frac{4}{\sqrt{13}}$, $\frac{12}{\sqrt{13}}$ (D) $\frac{3}{\sqrt{13}}$, $\frac{-4}{\sqrt{13}}$, $\frac{12}{\sqrt{13}}$

39. यदि $x\vec{i} - 3\vec{j} + 5\vec{k}$ एवं $-x\vec{i} + x\vec{j} + 2\vec{k}$ परस्पर लंब हों तो x =

 $x\vec{i} - 3\vec{j} + 5\vec{k}$. $-x\vec{i} + x\vec{j} + 2\vec{k}$ are perpendicular to each other then the

value of x =

- (A) -2,5 (C) -2,-5

40. $\vec{i} \times (\vec{i} \times \vec{j}) + \vec{j} \times (\vec{j} \times \vec{k}) + \vec{k} \times (\vec{j} \times \vec{k})$

(A) $\vec{i} + \vec{j} + \vec{k}$

(B) 0

(C) 1

(D) $-(\overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k})$

41. v - अक्ष की दिक कोज्याएँ हैं-

(A) (1, 0, 1)

(B) (0, 1, 0)

(C) $\left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)$

(D) इनमें से कोई नहीं

The direction Cosines of y axis are-

(A) (1, 0, 1)

(B) (0, 1, 0)

(C) $\left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)$

(D) None of these

[121/327]

Page 10 of 16

				(- riggs)	
400	VV -	CO	CET	समीकरण	44
44.	10.7		200.0	11-11-01-6-01	25-

(A) x = 0, y = 0

(B) z = 0

(C) $x = y \neq 0$

(D) इनमें से कोई नहीं

The equation of the xy - plane is-

(A) x = 0, y = 0

(B) z = 0

(C) $x = y \neq 0$

(D) none of these

43. यदि दो तल
$$2x - 4y + 3z = 5$$
 एवं $x + 2y + x = 12$ आपस में लंब हो तो $x = 12$

(A) -2

(B) 2

(C) 3

(D) इनमें से कोई नहीं

If two planes 2x - 4y + 3z = 5 and x + 2y + x = 12 are perpendicular to each other, then $\lambda =$

(A) -2

(C) 3

(D) done of these

The distance between (4, 3, 7) and (1, -1, -5) is

(A) 13

(C) 12

If A' and B' are independent events then-

- (A) $P(A'B') = P(A) \cdot P(B)$ (B) P(A'B') = P(A') + P(B')
- (C) $P(A'B') = P(A') \cdot P(B')$ (D) P(A'B') = P(A') P(B')

If events A and B are mutually exclusive then-

- (A) $P(A \cap B) = P(A).P(B)$
- (B) $P(A \cap B) = 0$

(C) $P(A \cap B) = 1$

(D) $P(A \cup B) = 0$

47. ਧਵਿ
$$P(A) = \frac{3}{8}$$
, $P(B) = \frac{1}{2}$ ਰथा $P(A \cap B) = \frac{1}{4}$ ਗੇ $P(A/B) =$

If
$$P(A) = \frac{3}{8}$$
, $P(B) = \frac{1}{2}$ and $P(A \cap B) = \frac{1}{4}$ then $P(A/B) =$

(A) 2

(C) $\frac{2}{3}$

(D) 3

48. यदि A और B दो घटनाएँ इस प्रकार हो ताकि $P(A) \neq 0$ और $P\left(\frac{B}{A}\right) = 1$ तो -If A and B are two events such that $P(A) \neq 0$ and $P(\frac{B}{A}) = 1$

(C)
$$B = \varphi$$

(D)
$$A \cap B = \varphi$$

49.
$$\int \frac{dx}{x + \sqrt{x}} dx$$

(A)
$$\log x + \log (1 + \sqrt{x}) + C$$

(C) $\log (1 + \sqrt{x}) + C$

(B)
$$2\log(1+\sqrt{x})+C$$

(C)
$$\log(1+\sqrt{x})+C$$

(D)
$$\log \sqrt{x} + C$$

50.
$$\lim_{n \to \infty} \left[\frac{e^{1/n} + e^{2/n} + e^{3/n} + \dots + e^{n/n}}{n} \right]$$

Solution of
$$\lim_{n\to\infty}$$

(गैर वस्तुनिष्ठ प्रश्न/ Non - Objective Type Questions)

प्रश्न संख्या 1 से 22 तक लघु उत्तरीय कोटि के हैं। प्रत्येक के लिए 2 अंक निर्धारित हैं। इनमें से किसी 15 का उत्तर दें।

Q. No. - I to 22 are Short Answer Type questions. Each carries 2 marks. Answer any 15 Questions from these.

क्या फलन $f: R \to R$ one-one (injective) फलन है जबकि $f(x) = x^3, x \in R$. (2)

Examine whether the function $f: R \to R$ is one-one (injective) if $f(x) = x^3$, $x \in R$.

सिद्ध करें कि -(2)

Prove that -

$$\tan \left[\frac{1}{2} \sin^{-1} \frac{2x}{1+x^2} + \frac{1}{2} \cos^{-1} \frac{1-x^2}{1+x^2} \right] = \frac{2x}{1-x^2}$$

[121/327]

Page 12 of 16

18. P का मान ज्ञात कीजिए, यदि -Find the value of P, if-

$$\left(\begin{array}{ccc} \overrightarrow{2i} + \overrightarrow{6j} + 2\overrightarrow{7k} \end{array}\right) \times \left(\begin{array}{ccc} \overrightarrow{i} + 3\overrightarrow{j} + \overrightarrow{pk} \end{array}\right) = 0$$

- 19. दिक् संख्याओं की सहायता से सिद्ध कीजिए कि बिंदु (1, -1, 3), (2, -4, 5) और (5, -13, 11) संरेख हैं।

 Prove by direction numbers, that the point. (1, -1, 3), (2, -4, 5) and (5, -13, 11) are in a straight Line.
- 20. बिंदु (4, -5, 6) की दूरी तल \vec{r} $\left(\vec{4i} + \vec{4j} + \vec{k}\right) = -6$ से ज्ञात कीजिए। (2)

Find the distance of the point (4, -5, 6) from the plane \vec{r} $(4\vec{i} - 4\vec{j} + 7\vec{k}) = -6$

21. यदि A तथा B दो स्वतंत्र घटनाएँ हों, तो सिद्ध करें कि-If A and B are two independent events then prove that-

(2)

P(A \cup B) = 1 – P(A') P. (B')

22. एक व्यक्ति 55 वर्ष का है, उसके 75 वर्षों तक जीवित रहने का प्रतिकूल संयोगानुपात 8 : 5 है तथा उसकी पत्नी 48 वर्ष की है, उसके 68 वर्षों तक जीवित रहने का प्रतिकूल संयोगानुपात 4 : 3 है। तो इस बात की संभावना बताएँ कि उनका जोड़ा उसके बाद 20 वर्षों तक जी सकेगा।

(2)

Odds are 8 : 5 against a man, who is 55 years old, living till he is 75 and 4 : 3 against

Odds are 8: 5 against a man, who is 55 years old, living till he is 75 and 4: 5 against his wife who is now 48, living till she is 68. Find the probability that the Couple will be alive 20 years hence.

प्रश्न संख्या 23 से 26 तक दीर्घ उत्तरीय कोटि के प्रश्न हैं। प्रत्येक के लिए 5 अंक निर्धारित हैं। प्रत्येक प्रश्न के साथ "अथवा "का विकल्प दिया गया है। आपको प्रश्न या अथवा में से किसी एक का उत्तर देना है। Q. No. – 23 to 26 are long answer type questions. Each question carries 5 marks. Each question has an alternative as "or". You have to answer each question or its alternative.

23. फलन $x^3 - 2x^2 + x + 6$ के उच्चिष्ठ और निम्निष्ठ मान ज्ञात करें। Find the maximum and minimum Values of $x^3 - 2x^2 + x + 6$. (5)

यदि
$$x^m \cdot y^n = (x + y)^{m+n}$$
 तो सिद्ध करें कि $\frac{dy}{dx} = \frac{y}{x}$

If
$$x^m \cdot y^n = (x + y)^{m+n}$$
 then prove that $\frac{dy}{dx} = \frac{y}{x}$

ITurn over

24. सिद्ध कीजिए कि -Prove that -

 $\int_0^{\pi/2} \log (\tan \theta + \cot \theta) d\theta = \pi \log 2$

अथवा / OR

(5)

(5)

(5)

- 24. सरल रेखा x + y = 2 द्वारा विभाजित वृत्त $x^2 + y^2 = 4$ के भागों में से छोटे भाग का क्षेत्रफल निकालें। (5) Find the area of the Smaller portion of the Circle $x^2 + y^2 = 4$ cut off by the line x + y = 2.
- 25. सदिश विधि से सिद्ध करें कि किसी त्रिभुज ABC में Prove by Vector method, that in any Δ ABC

 $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$

अथवा / OR

- 25. सिद्ध कीजिए कि बिंदुओं (4.7.8). (2.3.4) को मिलाने वाली सरल रखा बिंदुओं (2.4.10). (-2.-4.2) को मिलाने वाली सरल रखा के समानांतर है। (5)

 Show that the line joining the points (4.7.8). (2.3.4) is parallel to the line joining the points (2.4.10). (-2.-4.2)
- 26. अधिकतमीकरण करें (Maximize): z = 7x + 3y जबिक (Subject to): $x + 2y \ge 3$ $x + y \le 4$

x>0 y>0

अथवा / OR

26. एक फर्नीचर व्यापारी मात्र दो वस्तुएँ मेज और कुर्सी बेचता है। उसके पास निवेश के लिए 5000 ₹ एवं कंबल 60 वस्तुओं को रखने का स्थान है। एक मेज पर 250 ₹ और एक कुर्सी पर 50 ₹ की लागत आती है। वह एक मेज को 50 ₹ एवं एक कुर्सी को 15 ₹ लाम के साथ बेच सकता है। यह मानते हुए कि वह जितनी वस्तुएँ खरीदता है उन्हें बेच सकता है, उसे अपना धन किस प्रकार निवेशित करना चाहिए कि उसे अधिकमत लाम हो।

A Furniture dealer deals in only two items, table and chair. He has ₹5000 to invest and a space to store at most 60 pieces. A table costs him ₹250 and a chair ₹50. He can sell a table at a profit of ₹50 and a chair at a profit ₹15. Assuming that he can sell all the items that he buys, how should he invest his money in order that he may maximize his profit.

[121/327]