Roll No.

Total Pages : 04

BT-4/M-20 34096 OPERATING SYSTEMS CSE-210N

Unit Olic

Time : Three Hours]

marks.

[Maximum Marks : 75

Note : Attempt *Five* questions in all, selecting at least *one* question from each Unit. All questions carry equal

- 1. (a) Justify the need of I/O structure and storage hierarchy in a computer system. 5
 - (b) Discuss the roles of using systems calls and system programs for the effective implementation of operating systems services modules.
 - (c) Why it is always beneficial to use various types of protection by the operating systems ? 5
- 2. (a) Briefly discuss the following : 7.5
 - (i) Real time computing
 - (ii) Batch Processing
 - (b) What are the various system devices that are ordered by the operating systems ? Comment on the need of these system services. 7.5

(2)L-34096

1

Previous Pathshala

Unit II

3.	(a)	Explain the following CPU scheduling algorithms :				
		(i) SJF 2.5				
		(ii) FCFS 2.5				
		(iii) Round Robin. 2.5				
	(b)	Write and explain the Dining Philosophers Problem.				
		Also, provide the solution for the problem using				
		semaphores. 7.5				
4.	(a)	Explicate the classical problem of synchronization				
		Discuss the role of hardware and software support				
	\Box	which are involved in synchronization. 5				
	(b)	How non-preemptive scheduling works? Briefly				
	explain. 5					
	(c)	Draw and explain the flow of process management				
		activity that takes place during co-operating				
		processes and inter process communication.				

Unit III

5. (a) What is a page-fault ? List all the steps of how a page-fault is serviced by the operating system ? 7.5
(b) Define paging and fragmentation. The following is the sequence of page requests : 1, 2, 5, 3, 4, 3, 2, 5, 4, 2, 1, 1. Assume that there are three frames. Now, how many page faults will occur if MFU and

LRU algorithms are used to replace pages ? 7.5

(2)L-34096

2

- 6. (a) Explain the Dual-mode operation of an operating system. Explain contiguous memory allocation and linked allocation methods with the help of suitable working diagram.
 8
 - (b) Explain and justify the roles of the following :
 - (i) Paged segmentation 3.5
 - (ii) Recovery from deadlock 3.5

Unit IV

7. (a) Draw the Gantt chart for the SSTF and FCFS scheduling policies and calculate the turnaround time, average turnaround time, waiting time, average waiting time, throughput and processor utilization for the following set of processes that arrive at a given arrival time shown in the table by applying SSTF and FCFS.

Process	Arrival	Processing	
	Time	Time (Milliseconds)	
P1	0	3	
P2	1	5	
P3	2	5	
P4	3	5	
P5	4	6	
P6	5	4	
E1-: 41 N	r	- (in dentine and all sining	

(b) Explain the Non-continuous (indexing and chaining) disk space management methods.

(2)L-34096

Previous Pathshala

8.	(a)	Explain the following security models :					
		(i)	Mandatory Access Control	2.5			
		(ii)	Rule Based Access Control	2.5			
		(iii)	Discretionary-Access Control	2.5			
	(b)	Justi	fy the roles of the following with conce	ern to			
		the l	the kernel I/O subsystem :				
		(i)	Scheduling	2.5			
		(ii)	Caching	2.5			
		(iii)	Spooling	2.5			
		ė					
		1	a ever				
			chalu				
			COC.				
